-
極限
定義:某一個(gè)函數(shù)中的某一個(gè)變量,此變量在變大(或者變?。┑挠肋h(yuǎn)變化過(guò)程中,逐漸向某一個(gè)確定的數(shù)值A(chǔ)不斷地逼近的過(guò)程,此變量的變化,被人為規(guī)定為“永遠(yuǎn)靠近而不停止”、其有一個(gè)“不斷地極為靠近A點(diǎn)的趨勢(shì)”稱作極限。
導(dǎo)數(shù)
線性函數(shù),函數(shù)在x的導(dǎo)數(shù) =x 對(duì)應(yīng)的斜率
非線性函數(shù),函數(shù)在x的導(dǎo)數(shù) =x 對(duì)應(yīng)切線的斜率
導(dǎo)數(shù)的特點(diǎn)
查看全部 -
123
查看全部 -
123
查看全部 -
只有一行的矩陣,稱為行矩陣,又稱行向量;只有一列的矩陣,稱為列矩陣,又稱為列向量。
向量的基本運(yùn)算:
(1)遵循矩陣基本運(yùn)算原則
(2)矩陣與向量相乘,結(jié)果仍為向量
查看全部 -
同型矩陣:行數(shù)、列數(shù)分別相同的矩陣
負(fù)矩陣:矩陣元素互為相反數(shù)關(guān)系的矩陣(負(fù)矩陣必定為同型矩陣)
矩陣的加法:矩陣元素分別相加(互為同型矩陣才能進(jìn)行加法運(yùn)算)
矩陣的加法滿足交換律、結(jié)合律,即:
A+B=B+A
A+B+C=A+(B+C)
矩陣的減法可以理解為對(duì)負(fù)矩陣的加法,即:
A-B=A+(-B)
矩陣的數(shù)乘:數(shù)與矩陣元素分別相乘
矩陣的數(shù)乘滿足交換律、結(jié)合律、分配律
矩陣與矩陣相乘:行列元素依次相乘并求和(第一個(gè)矩陣列數(shù)等于第二個(gè)矩陣行數(shù))
矩陣與矩陣相乘不滿足交換律,滿足結(jié)合律、分配律
查看全部 -
123
查看全部 -
matplotlib(www.matplotlib.org.cn/)
Python基礎(chǔ)繪圖庫(kù),幾行代碼即可生成繪圖。
pandas(www.pypandas.cn/)
分析機(jī)構(gòu)化數(shù)據(jù)的工具庫(kù),可用于快速實(shí)現(xiàn)數(shù)據(jù)導(dǎo)入/出、索引。
NumPy(www.numpy.org.cn/)
使用Python進(jìn)行科學(xué)計(jì)算的基礎(chǔ)軟件包。核心:基于N維數(shù)組對(duì)象ndarray的數(shù)組運(yùn)算。
查看全部 -
矩陣 微積分 概率查看全部
-
矩陣與向量相乘還是向量
查看全部 -
條件概率
全概率
查看全部 -
積分
不定積分:函數(shù)f的不定積分
原來(lái)函數(shù)的反導(dǎo)數(shù)有無(wú)窮多個(gè)。
定積分
導(dǎo)數(shù)與積分
通過(guò)積分求概率
常用的積分公式
?
查看全部 -
回歸問(wèn)題求解:
建立模型得到面積和房?jī)r(jià)的關(guān)系
先假設(shè)存在一個(gè)線性關(guān)系,y=ax+b,查找合理的a和b的過(guò)程
通過(guò)人眼來(lái)看,如何計(jì)算機(jī)尋找合適的a和b的核心思路。
距離的平方之和最小。
梯度下降法,能夠找到極值點(diǎn)
能實(shí)現(xiàn)上面最小的時(shí)候,下面的式子也是最小的。
慢慢尋找極小值對(duì)應(yīng)的a和b的值。
查看全部 -
微積分
微分--導(dǎo)數(shù),在人工智能中非常重要。
2.1 極限與導(dǎo)數(shù)
極限
求極限
(1)將上下都除以X3
(2)將下面的式子進(jìn)行分解
?計(jì)算線性函數(shù)的導(dǎo)數(shù)
?計(jì)算非線性函數(shù)的導(dǎo)數(shù)
常用的導(dǎo)數(shù)公式
導(dǎo)數(shù)的特點(diǎn):AI中需要用到的點(diǎn)
極值點(diǎn):最小點(diǎn)或者是最大點(diǎn)
?對(duì)損失函數(shù)求導(dǎo)。
查看全部 -
課后題
查看全部 -
加減時(shí),必須是同型矩陣,才能進(jìn)行計(jì)算。
矩陣加法和矩陣減法相同,加減法必須是同型矩陣。
矩陣的數(shù)乘:
查看全部
舉報(bào)