第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號安全,請及時綁定郵箱和手機立即綁定

Udacity-Machine Learning納米學位-學習筆記1

標簽:
機器學習

课程地址

Category:

Machine Learning
   Artificial Intelligence
   Data Science
   Basic Statics

Tips

  • stick to your schedule

  • be relentless in searching the answer on your own

  • be an active member in the community


16/5/20

Welcome

Machine Learning

What is Machine Learning ?
  • Processing the data & understanding the data

  • Then react intelligently to it

  • Build models to represent Data

  • Lots of different things, really next natural evolution

Compare with traditional programming ?
  • Traditional: Build the decision making directly into the programming

  • ML: Build an agent who can look at a bunch of images over time and recognize

Application ?
  • Almost every field : Predict, Identify, Maximize

Objectives ?
  • When to use them, How

  • What to apply to solve it, How to evaluate


16/5/21

Artificial Intelligence & Data Science

2 Fields:
  • Artificial Intelligence

  • Data Science

Artificial Intelligence

  • To create machines that are as smart as humans

  • 6 Characteristics

  • 5 Big problems to solve

  • 4 Schools of AI

  • 3 Fundamental Process of knowledge based AI

  • Fundamental Tech: Bayesian Rule, Bayesian Network

Data Science

What is Data Scientist ?
  • Can do math, and programming.

  • Ask the right questions and solve them.

  • Communicate, Report, and Present.

What does Data Scientist Do ?
  • Data

  • Model

  • Understand patterns

Machine Learning

3 Parts:
  • Supervised Learning:
    Labeled Data to get the label for new data

  • Unsupervised Learning:
    Input->Observe the relationship among them->Identify

  • Reinforcement Learning:
    **Learn from delayed award **

What to learn:
  • Parameters

  • Structure

  • Hidden concepts

What for:
  • Predict

  • Diagnose

  • Summarization

Output:
  • Classification

  • Regression


16/5/22

Basic Statics Concepts

Basic Statics

Measure of Central Tendency
  • mode, median, average

Variability of Data
  • Range= Max-Min

  • Quartile: Q1, IQR=Q3-Q1

  • Outlier: <Q1-1.5IQR or >Q3+1.5IQR

  • Variance: average( sum( (Xi-Xbar)^2 ) )

  • Standard Deviation: squared root of Variance

點擊查看更多內(nèi)容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優(yōu)質(zhì)文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續(xù)努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優(yōu)惠券免費領(lǐng)

立即參與 放棄機會
微信客服

購課補貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動學習伙伴

公眾號

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號

舉報

0/150
提交
取消