我有重復(fù)的條目需要合并。id1除了名為和 的兩個(gè)字段之外,所有字段都是相同的id2- 這些是列表字段,我想組合它們的條目。以下是我僅對(duì)id1和id2字段執(zhí)行此操作的方法:summary_df = df.groupby(['path_md5']).agg( id1 =('id1', lambda x: str(sorted({id for ids in x.dropna() for id in ids}))), id2 =('id2', lambda x: str(sorted({id for ids in x.dropna() for id in ids}))),)然而,我不想添加 60 個(gè)額外的字段,first這樣我就可以獲取它們的價(jià)值。有一個(gè)更好的方法嗎?這是我想要的輸入/輸出的示例:id1 id2 path_md5 other_fields (could be 50 fields -- all the same)...[1,2] [3] abc ...[7] [9] abc ...[17] [11] xyz ...結(jié)果應(yīng)該是:id1 id2 path_md5 other_fields...[1,2,7] [3,9] abc ...[17] [11] xyz ...最好的方法是什么?我嘗試執(zhí)行以下操作:# Dedupe path, combining id1, id2agg_fields = [col_name for col_name in df.columns if col_name not in ('id1', 'id2')]raw_df = raw_df.groupby(agg_fields).agg(...).reset_index()但它給了我零結(jié)果(也許是因?yàn)楹芏嘀刀际强盏模?
1 回答

婷婷同學(xué)_
TA貢獻(xiàn)1844條經(jīng)驗(yàn) 獲得超8個(gè)贊
您可以構(gòu)建一個(gè)聚合字典:
agg_dict = {k:'first' for k in df.columns if k not in ['id1','id2','path_md5']}
agg_dict['id1'] = lambda x: str(sorted({id for ids in x.dropna() for id in ids}))
agg_dict['id2'] = lambda x: str(sorted({id for ids in x.dropna() for id in ids}))
summary_df = df.groupby('path_md5', as_index=False).agg(agg_dict)
添加回答
舉報(bào)
0/150
提交
取消