1 回答

TA貢獻(xiàn)1876條經(jīng)驗 獲得超5個贊
事實證明,主要問題是您不應(yīng)該將 pandas 繪圖函數(shù)與 matplotlib 混合使用,這會導(dǎo)致軸重復(fù)。否則,實現(xiàn)是相當(dāng)直接的,改編自這個matplotlib 示例。
from mpl_toolkits.axes_grid1 import host_subplot
import mpl_toolkits.axisartist as AA
from matplotlib import pyplot as plt
from itertools import cycle
import pandas as pd
#fake data creation with different spread for different axes
#this entire block can be deleted if you import your df
from pandas._testing import rands_array
import numpy as np
fakencol=5
fakenrow=7
np.random.seed(20200916)
df = pd.DataFrame(np.random.randint(1, 10, fakenrow*fakencol).reshape(fakenrow, fakencol), columns=rands_array(2, fakencol))
df = df.multiply(np.power(np.asarray([10]), np.arange(fakencol)))
df.index = pd.date_range("20200916", periods=fakenrow)
#defining a color scheme with unique colors
#if you want to include more than 20 axes, well, what can I say
sc_color = cycle(plt.cm.tab20.colors)
#defining the size of the figure in relation to the number of dataframe columns
#might need adjustment for optimal data presentation
offset = 60
plt.rcParams['figure.figsize'] = 10+df.shape[1], 5
#host figure and first plot
host = host_subplot(111, axes_class=AA.Axes)
h, = host.plot(df.index, df.iloc[:, 0], c=next(sc_color), label=df.columns[0])
host.set_ylabel(df.columns[0])
host.axis["left"].label.set_color(h.get_color())
host.set_xlabel("time")
#plotting the rest of the axes
for i, cols in enumerate(df.columns[1:]):
curr_ax = host.twinx()
new_fixed_axis = curr_ax.get_grid_helper().new_fixed_axis
curr_ax.axis["right"] = new_fixed_axis(loc="right",
axes=curr_ax,
offset=(offset*i, 0))
curr_p, = curr_ax.plot(df.index, df[cols], c=next(sc_color), label=cols)
curr_ax.axis["right"].label.set_color(curr_p.get_color())
curr_ax.set_ylabel(cols)
curr_ax.yaxis.label.set_color(curr_p.get_color())
plt.legend()
plt.tight_layout()
plt.show()
想想看 - 將軸平均分配到圖的左側(cè)和右側(cè)可能會更好。那好吧。
添加回答
舉報