我想構(gòu)建一個具有一個輸入和兩個輸出的 LSTM 模型。我的數(shù)據(jù)和圖一樣。我的模型如下。但它只能預(yù)測一種輸出。你能幫我設(shè)計兩個輸出的模型嗎?謝謝s1 = MinMaxScaler(feature_range=(-1,1))Xs = s1.fit_transform(train[['y1','y2','x']])s2 = MinMaxScaler(feature_range=(-1,1))Ys = s2.fit_transform(train[['y1', 'y2']])window = 70X = []Y = []for i in range(window,len(Xs)): X.append(Xs[i-window:i,:]) Y.append(Ys[i])X, Y = np.array(X), np.array(Y)model = Sequential()model.add(LSTM(units=50, return_sequences=True,input_shape=(X.shape[1],X.shape[2])))model.add(Dropout(0.2))model.add(LSTM(units=50, return_sequences=True))model.add(Dropout(0.2))model.add(LSTM(units=50))model.add(Dropout(0.2))model.add(Dense(units=1))model.compile(optimizer = 'adam', loss = 'mean_squared_error',metrics = ['MAE'])es = EarlyStopping(monitor='loss',mode='min',verbose=1,patience=10)history = model.fit(X, Y, epochs = 10, batch_size = 250, callbacks=[es], verbose=1)
2 回答

楊__羊羊
TA貢獻1943條經(jīng)驗 獲得超7個贊
output_shape
模型最后一層的形狀應(yīng)與 Y 數(shù)據(jù)的形狀相匹配。
由于您有 2 個 Y 數(shù)據(jù),因此您可以將最后一個 Dense 層更改為具有 2 個單位:
model.add(密集(單位=1))
model.add(Dense(units=2))

蕪湖不蕪
TA貢獻1796條經(jīng)驗 獲得超7個贊
您應(yīng)該使用函數(shù)式 API
例如:
input = Input(shape=(shape, ))
out1 = Dense(1, activation='linear')(input)
out2 = Dense(1, activation='linear')(input)
out3 = Dense(1, activation='linear')(input)
model = Model(inputs=input, outputs=[out1,out2,out3])
添加回答
舉報
0/150
提交
取消