我試圖從類似于此的數(shù)據(jù)框中提取一些特征:feature1:float feature2:float feature3:string succeeded:boolean我遠(yuǎn)不是該主題的專家,但我嘗試了以下操作:from sklearn.feature_extraction.text import CountVectorizerimport scipy as spvectorizer = CountVectorizer()vectorizer.fit(small_df.feature3)X = sp.sparse.hstack( (vectorizer.transform(small_df.feature3), small_df[['feature1', 'feature2']), format='csr')X_columns = vectorizer.get_feature_names() + df[cols].columns.tolist()但是,我最終遇到以下錯(cuò)誤: TypeError: no supported conversion for types: (dtype('int64'), dtype('O'))任何幫助,將不勝感激!
1 回答

撒科打諢
TA貢獻(xiàn)1934條經(jīng)驗(yàn) 獲得超2個(gè)贊
解決方案:
X = sp.sparse.hstack( (vectorizer.transform(small_df.name), small_df[cols].values.astype(np.float)))
添加回答
舉報(bào)
0/150
提交
取消