2 回答

TA貢獻1784條經(jīng)驗 獲得超8個贊
假設您的算法是正確的,則可以按如下方式分析確定total_prob。
這個總結(jié):
prob = 0
for j in range(0, n1+1):
if (j % 2 == 0):
prob += comb(n1, j)
正在計算二項式系數(shù)的偶數(shù)項,即:
comb(n1, 0) + comb(n1, 2) + ... + comb(n1, J)
where J is even and J>=n1
J > n1 沒問題,因為對于 J > n1,comb(n1, J) = 0(nCr 的定義)
這個總和就是來源:
prob = 2**(n1 - 1)
代入total_prob方程中的prob:
total_prob = (2**n0) *(2**(n1-1)) / (2 ** (n0+n1))
total_prob = 2**(n0 + n1 - 1)/(2**(n0+n1))
total_prob = 0.5 (always)

TA貢獻1789條經(jīng)驗 獲得超8個贊
import math
def comb(n, k): # Calculates the combination based on n and k values
return math.factorial(n) // math.factorial(n - k) //math.factorial(k)
def question(n0, n1): # probability that the total number of coins in the random subset is even
"""probability of sums of even / total probability"""
p = 0
for i in range(0, n1+1):
if (i % 2 == 0):
p += comb(n1, i)
return p / (2 ** n1)
添加回答
舉報