4 回答

TA貢獻(xiàn)1887條經(jīng)驗(yàn) 獲得超5個(gè)贊
我想出了這個(gè),它基本上是一個(gè)背包,但如果不適合推薦,它會(huì)從菜單中遞歸刪除菜肴:
menu = [
{'name':'Cheese Pizza Slice', 'calories': 700, 'cost': 4},
{'name':'House Salad', 'calories': 100, 'cost': 8.5},
{'name':'Grilled Shrimp', 'calories': 400, 'cost': 15},
{'name':'Beef Brisket', 'calories': 400, 'cost': 12},
{'name':'Soda', 'calories': 100, 'cost': 1},
{'name':'Cake', 'calories': 300, 'cost': 3},
]
def get_price(recommendation):
return sum(dish["cost"] for dish in recommendation)
def get_calories(recommendation):
return sum(dish["calories"] for dish in recommendation)
def menu_recommendation(menu, min_cal, max_cal, budget):
sorted_menu = sorted(menu, key=lambda dish: dish["cost"], reverse=True)
recommendation = []
for dish in sorted_menu:
if dish["cost"] + get_price(recommendation) <= budget:
recommendation.append(dish)
if recommendation:
if get_calories(recommendation) < min_cal:
sorted_menu.remove(min(recommendation, key=lambda dish: dish["calories"]/dish["cost"]))
return menu_recommendation(sorted_menu, min_cal, max_cal, budget)
if get_calories(recommendation) > max_cal:
sorted_menu.remove(max(recommendation, key=lambda dish: dish["calories"]/dish["cost"]))
return menu_recommendation(sorted_menu, min_cal, max_cal, budget)
return recommendation
recommendation = menu_recommendation(menu, 500, 800, 15)
total_cost = sum(item['cost'] for item in recommendation)
total_cals = sum(item['calories'] for item in recommendation)
print(f'recommendation: {recommendation}')
print(f'total cost: {total_cost}')
它根據(jù)卡路里/成本率刪除元素,因?yàn)檫@是應(yīng)用背包的成本。
如果您有任何疑問(wèn),請(qǐng)告訴我。

TA貢獻(xiàn)1993條經(jīng)驗(yàn) 獲得超6個(gè)贊
(calorie, cost)這是一個(gè)動(dòng)態(tài)編程解決方案,它構(gòu)建了一個(gè)數(shù)據(jù)結(jié)構(gòu),顯示我們可以最終得到的所有選項(xiàng)以及每個(gè)選項(xiàng)。我們尋找符合標(biāo)準(zhǔn)的最佳方案,然后找到推薦方案。
def menu_recommendation(menu, min_cal, max_cal, budget):
# This finds the best possible solution in pseudo-polynomial time.
recommendation_tree = {(0, 0.0): None}
for item in menu:
# This tree will wind up being the old plus new entries from adding this item.
new_recommendation_tree = {}
for key in recommendation_tree.keys():
calories, cost = key
new_recommendation_tree[key] = recommendation_tree[key]
new_key = (calories + item['calories'], cost + item['cost'])
if new_key not in recommendation_tree and new_key[0] <= max_cal:
# This is a new calorie/cost combination to look at.
new_recommendation_tree[new_key] = item
# And now save the work.
recommendation_tree = new_recommendation_tree
# Now we look for the best combination.
best = None
for key in recommendation_tree:
calories, cost = key
# By construction, we know that calories <= max_cal
if min_cal <= calories:
if best is None or abs(budget - cost) < abs(budget - best[1]):
# We improved!
best = key
if best is None:
return None
else:
# We need to follow the tree back to the root to find the recommendation
calories, cost = best
item = recommendation_tree[best]
answer = []
while item is not None:
# This item is part of the menu.
answer.append(item)
# And now find where we were before adding this item.
calories = calories - item['calories']
cost = cost - item['cost']
best = (calories, cost)
item = recommendation_tree[best]
return answer

TA貢獻(xiàn)1827條經(jīng)驗(yàn) 獲得超4個(gè)贊
也許我們可以做一些遞歸的事情。
def smallest_combo(lst, m, n, z):
# filter list to remove elements we can't use next without breaking the rules
lst = [dct for dct in lst if m <= dct['x'] <= n and dct['y'] <= z]
# recursive base case
if len(lst) == 0:
return []
# go through our list of eligibles
# simulate 'what would the best possibility be if we picked that one to go with next'
# then of those results select the one with the sum('y') closest to z
# (breaking ties with the largest sum('x'))
return min((
[dct] + smallest_combo(lst, m - dct['x'], n - dct['x'], z - dct['y'])
for dct in lst
), key=
lambda com: [z - sum(d['y'] for d in com), -sum(d['x'] for d in com)]
)
inp = [{'name': 'item1', 'x': 600, 'y': 5},
{'name': 'item2', 'x': 200, 'y': 8},
{'name': 'item3', 'x': 500, 'y': 12.5},
{'name': 'item4', 'x': 0, 'y': 1.5},
{'name': 'item5', 'x': 100, 'y': 1}]
print(smallest_combo(inp, 500, 1500, 25))
# [{'name': 'item3', 'x': 500, 'y': 12.5}, {'name': 'item3', 'x': 500, 'y': 12.5}]
有多種方法可以加快這一速度。首先通過(guò)制作遞歸緩存,然后采用動(dòng)態(tài)編程方法(即從底部開始而不是從頂部開始)。

TA貢獻(xiàn)1829條經(jīng)驗(yàn) 獲得超13個(gè)贊
我相信我已經(jīng)解決了提出超出范圍 min_cal / max_cal 邊界的建議的問(wèn)題,但我仍然覺(jué)得可能有一個(gè)更接近預(yù)算的解決方案。
這是我更新的代碼:
menu = [
{'name':'Cheese Pizza Slice', 'calories': 700, 'cost': 4},
{'name':'House Salad', 'calories': 100, 'cost': 8.5},
{'name':'Grilled Shrimp', 'calories': 400, 'cost': 15},
{'name':'Beef Brisket', 'calories': 400, 'cost': 12},
{'name':'Soda', 'calories': 100, 'cost': 1},
{'name':'Cake', 'calories': 300, 'cost': 3},
]
def menu_recommendation(menu, min_cal, max_cal, budget):
menu = [item for item in menu if item['calories'] <= max_cal and item['cost'] <= budget]
if len(menu) == 0: return []
return min(([item] + menu_recommendation(menu, min_cal - item['calories'], max_cal - item['calories'], budget - item['cost'])
for item in menu
), key=
lambda recommendations: [budget - sum(item['cost'] for item in recommendations)
and min_cal - sum(item['calories'] for item in recommendations) >= 0
and max_cal - sum(item['calories'] for item in recommendations) >= 0,
-sum(item['calories'] for item in recommendations)]
)
recommendation = menu_recommendation(menu, 1000, 1200, 15)
total_cost = sum(item['cost'] for item in recommendation)
total_cals = sum(item['calories'] for item in recommendation)
print(f'recommendation: {recommendation}')
print(f'total cost: {total_cost}')
print(f'total calories: {total_cals}')
如果有人有任何改進(jìn),我很樂(lè)意聽到他們的聲音!
添加回答
舉報(bào)