2 回答

TA貢獻(xiàn)1807條經(jīng)驗(yàn) 獲得超9個贊
所以我嘗試了這個并且效果很好
ncols=[]
for i in range(len(BuffaloBillsO.columns)):
ncols.append(BuffaloBillsO.columns[i][1])
ncols=dict(zip(BuffaloBillsO.columns,ncols))
BuffaloBillsO.columns =BuffaloBillsO.columns.to_series().map(ncols)
以下是 BuffaloBillsO.columns 的輸出
Index(['Week', 'Day', 'Date', 'Unnamed: 3_level_1', 'Unnamed: 4_level_1', 'OT',
'Unnamed: 6_level_1', 'Opp', 'Tm', 'Opp', 'Cmp', 'Att', 'Yds', 'TD',
'Int', 'Sk', 'Yds.1', 'Y/A', 'NY/A', 'Cmp%', 'Rate', 'Att', 'Yds',
'Y/A', 'TD', 'FGM', 'FGA', 'XPM', 'XPA', 'Pnt', 'Yds', '3DConv',
'3DAtt', '4DConv', '4DAtt', 'ToP'],
dtype='object')

TA貢獻(xiàn)1873條經(jīng)驗(yàn) 獲得超9個贊
您可以通過以下方式傳入標(biāo)題級別.read_html():
import pandas as pd
url = 'https://www.pro-football-reference.com/teams/buf/2020/gamelog/'
BuffaloBillsO = pd.read_html(url,header=1)[0]
輸出:
print(BuffaloBillsO.columns)
Index(['Week', 'Day', 'Date', 'Unnamed: 3', 'Unnamed: 4', 'OT', 'Unnamed: 6',
'Opp', 'Tm', 'Opp.1', 'Cmp', 'Att', 'Yds', 'TD', 'Int', 'Sk', 'Yds.1',
'Y/A', 'NY/A', 'Cmp%', 'Rate', 'Att.1', 'Yds.2', 'Y/A.1', 'TD.1', 'FGM',
'FGA', 'XPM', 'XPA', 'Pnt', 'Yds.3', '3DConv', '3DAtt', '4DConv',
'4DAtt', 'ToP'],
dtype='object')
添加回答
舉報(bào)