第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號(hào)安全,請(qǐng)及時(shí)綁定郵箱和手機(jī)立即綁定
已解決430363個(gè)問題,去搜搜看,總會(huì)有你想問的

如何提高深度學(xué)習(xí)的準(zhǔn)確性和驗(yàn)證準(zhǔn)確性

如何提高深度學(xué)習(xí)的準(zhǔn)確性和驗(yàn)證準(zhǔn)確性

一只名叫tom的貓 2023-09-05 17:20:08
我正在用自己的數(shù)據(jù)訓(xùn)練 CNN,我在相同的數(shù)據(jù)上嘗試了 resnet50 和 resnet101 以及我自己的模型,準(zhǔn)確度為 63,驗(yàn)證準(zhǔn)確度為 0.08。我知道問題出在我的數(shù)據(jù)上,我想在拆分?jǐn)?shù)據(jù)之前嘗試對(duì)數(shù)據(jù)進(jìn)行洗牌,但我的數(shù)據(jù)分為 26 個(gè)不同的類,如何在將數(shù)據(jù)拆分為訓(xùn)練集和驗(yàn)證集之前對(duì)數(shù)據(jù)進(jìn)行洗牌。我的數(shù)據(jù)集超過 36K 圖像。(trainX, testX, trainY, testY) = train_test_split(data, labels,    test_size=0.25, stratify=labels, random_state=42)# initialize the training data augmentation objecttrainAug = ImageDataGenerator(    rotation_range=30,    zoom_range=0.15,    width_shift_range=0.2,    height_shift_range=0.2,    shear_range=0.15,    horizontal_flip=True,    fill_mode="nearest")# initialize the validation/testing data augmentation object (which# we'll be adding mean subtraction to)valAug = ImageDataGenerator()# define the ImageNet mean subtraction (in RGB order) and set the# the mean subtraction value for each of the data augmentation# objectsmean = np.array([123.68, 116.779, 103.939], dtype='float32')trainAug.mean = meanvalAug.mean = meanmodel = Sequential()# The first two layers with 32 filters of window size 3x3model.add(Conv2D(32, (5, 5), padding='same', activation='relu', input_shape=(224, 224, 3)))model.add(Conv2D(32, (5, 5), activation='relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))model.add(Conv2D(64, (5, 5), padding='same', activation='relu'))model.add(Conv2D(64, (5, 5), activation='relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))model.add(Conv2D(128, (3, 3), padding='same', activation='relu'))model.add(Conv2D(128, (3, 3), activation='relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))model.add(Flatten())model.add(Dense(512, activation='relu'))model.add(Dropout(0.5))model.add(Dense(labels, activation='softmax'))
查看完整描述

1 回答

?
qq_笑_17

TA貢獻(xiàn)1818條經(jīng)驗(yàn) 獲得超7個(gè)贊

您可以使用 ImageDataGenerator 的驗(yàn)證 split 關(guān)鍵字自動(dòng)拆分訓(xùn)練數(shù)據(jù)和測(cè)試數(shù)據(jù)。


train_datagen = ImageDataGenerator(rescale=1./255,

    shear_range=0.2,

    zoom_range=0.2,

    horizontal_flip=True,

    validation_split=0.2) # set validation split


train_generator = train_datagen.flow_from_directory(

    train_data_dir,

    target_size=(img_height, img_width),

    batch_size=batch_size,

    class_mode='binary',

    subset='training') # set as training data


validation_generator = train_datagen.flow_from_directory(

    train_data_dir, # same directory as training data

    target_size=(img_height, img_width),

    batch_size=batch_size,

    class_mode='binary',

    subset='validation') # set as validation data


model.fit_generator(

    train_generator,

    steps_per_epoch = train_generator.samples // batch_size,

    validation_data = validation_generator, 

    validation_steps = validation_generator.samples // batch_size,

    epochs = nb_epochs)

當(dāng)ImageDataGenerator自動(dòng)打亂您的輸入數(shù)據(jù)時(shí),您使用ImageDataGenerator的數(shù)據(jù)會(huì)被打亂和分割。


在你的情況下,你需要flow而不是flow_from_directory


查看完整回答
反對(duì) 回復(fù) 2023-09-05
  • 1 回答
  • 0 關(guān)注
  • 93 瀏覽
慕課專欄
更多

添加回答

舉報(bào)

0/150
提交
取消
微信客服

購(gòu)課補(bǔ)貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動(dòng)學(xué)習(xí)伙伴

公眾號(hào)

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號(hào)