1 回答

TA貢獻(xiàn)1836條經(jīng)驗 獲得超3個贊
data_dict = dict() # create an empty dict here
for k, df in df_dict.items():
df_dict[k]['Return %'] = df.iloc[:, 0].pct_change(-1)*100
# aggregate the max and min of Return
mm = df_dict[k]['Return %'].agg(['max', 'min'])
# add it to the dict, with ticker as the key
data_dict[k] = {'max': mm.max(), 'min': mm.min()}
# convert to a dataframe if you want
mm_df = pd.DataFrame.from_dict(data_dict, orient='index')
# display(mm_df)
max min
aapl 8.70284 -4.90070
msft 6.60377 -4.08443
# save
mm_df.to_csv('max_min_return.csv', index=True)
添加回答
舉報