2 回答

TA貢獻1868條經(jīng)驗 獲得超4個贊
您還可以根據(jù)獲得的索引創(chuàng)建笛卡爾積索引列表reindex:
out = df.groupby(['Group', 'Cat']).describe()
idx = pd.MultiIndex.from_product((out.index.levels[0],out.index.levels[1]))
out = out.reindex(idx,fill_value=0)
Value
count mean std min 25% 50% 75% max
Group1 Cat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cat1 1.0 1230.0 NaN 1230.0 1230.0 1230.0 1230.0 1230.0
Cat2 1.0 4019.0 NaN 4019.0 4019.0 4019.0 4019.0 4019.0
Cat3 1.0 9491.0 NaN 9491.0 9491.0 9491.0 9491.0 9491.0
Cat4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cat5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cat7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cat8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cat9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Group2 Cat 1.0 1923.0 NaN 1923.0 1923.0 1923.0 1923.0 1923.0
Cat1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cat2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cat3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cat4 1.0 9588.0 NaN 9588.0 9588.0 9588.0 9588.0 9588.0
Cat5 1.0 6402.0 NaN 6402.0 6402.0 6402.0 6402.0 6402.0
Cat7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cat8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cat9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Group3 Cat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cat1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
....................................
...............................

TA貢獻1840條經(jīng)驗 獲得超5個贊
檢查unstack
+ stack
,注意我還建議保留行值NaN
不填充 0
out = df.groupby(['Group', 'Cat']).describe().unstack().stack(dropna=False)
添加回答
舉報