2 回答

TA貢獻(xiàn)1891條經(jīng)驗(yàn) 獲得超3個(gè)贊
這是一個(gè)有趣的問題,所以我決定深入調(diào)查您的主要顧慮。
# required modules line_profiler, matplotlib, seaborn abd scipy
import time as dt
from line_profiler import LineProfiler
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
success = True
can_test = True
def and_op():
for x in range(2000):
s = success and can_test
def or_op():
for x in range(2000):
s = success or can_test
or_op_list = []
for x in range(0,1000):
lp = LineProfiler()
lp_wrapper = lp(or_op)
lp_wrapper()
lstats = lp.get_stats()
total_time = 0
for v in lstats.timings.values():
for op in v:
total_time += op[-1]
final = op[-1]
operator = final/total_time
or_op_list.append(operator)
and_op_list = []
for x in range(0,1000):
lp = LineProfiler()
lp_wrapper = lp(and_op)
lp_wrapper()
lstats = lp.get_stats()
total_time = 0
for v in lstats.timings.values():
for op in v:
total_time += op[-1]
final = op[-1]
operator = final/total_time
and_op_list.append(operator)
sns.kdeplot(and_op_list, label = 'AND')
sns.kdeplot(or_op_list, label = 'OR')
plt.show()
print(stats.ttest_ind(and_op_list,or_op_list, equal_var = False))
pvalue=1.8293386245013954e-103
實(shí)際上,與“和”操作相比,“或”具有統(tǒng)計(jì)意義并且不同

TA貢獻(xiàn)1856條經(jīng)驗(yàn) 獲得超5個(gè)贊
當(dāng)我在我的機(jī)器上運(yùn)行您的代碼時(shí),它有時(shí)打印出來的速度也True and True比 快True or True。
出現(xiàn)這種現(xiàn)象的原因是您dt.time()的代碼以“微秒”(即 1000 納秒)為尺度測(cè)量時(shí)間,但是,這個(gè)微秒尺度太稀疏,無法測(cè)量每次執(zhí)行 or所花費(fèi)的時(shí)間。在大多數(shù)情況下, or所花費(fèi)的時(shí)間小于1 微秒。if success and can_test:if success or can_test:if success and can_test:if success or can_test:
因此,在下面的代碼部分中:
for i in range(10000000):
start = dt.time()
if success and can_test: # a dust particle
stop = dt.time()
time += stop - start # measured by a normal scale ruler
for i in range(10000000):
start = dt.time()
if success or can_test: # a dust particle
stop = dt.time()
time += stop - start # measured by a normal scale ruler
您的代碼所做的就像用普通刻度尺測(cè)量每個(gè)灰塵顆粒并將測(cè)量值相加。由于測(cè)量誤差巨大,結(jié)果失真。
為了進(jìn)一步調(diào)查,如果我們執(zhí)行下面的代碼(d記錄所花費(fèi)的時(shí)間及其頻率):
import time as dt
from pprint import pprint
success = True
can_test = True
time = 0
d = {}
for i in range(10000000):
start = dt.time_ns()
if success and can_test: # a dust particle
stop = dt.time_ns()
diff_time = stop - start # measurement by a normal scale ruler
d[diff_time] = d.get(diff_time, 0) + 1
time += diff_time
print(f'"and" operation took: {time} ns')
print('"and" operation time distribution:')
pprint(d)
print()
time = 0
d = {}
for i in range(10000000):
start = dt.time_ns()
if success or can_test: # a dust particle
stop = dt.time_ns()
diff_time = stop - start # measurement by a normal scale ruler
d[diff_time] = d.get(diff_time, 0) + 1
time += diff_time
print(f'"or" operation took: {time} ns')
print('"or" operation time distribution:')
pprint(d)
它將打印如下:
"and" operation took: 1467442000 ns
"and" operation time distribution:
{0: 8565832,
1000: 1432066,
2000: 136,
3000: 24,
4000: 12,
5000: 15,
6000: 10,
7000: 12,
8000: 6,
9000: 7,
10000: 6,
11000: 3,
12000: 191,
13000: 722,
14000: 170,
15000: 462,
16000: 23,
17000: 30,
18000: 27,
19000: 10,
20000: 12,
21000: 11,
22000: 61,
23000: 65,
24000: 9,
25000: 2,
26000: 2,
27000: 3,
28000: 1,
29000: 4,
30000: 4,
31000: 2,
32000: 2,
33000: 2,
34000: 3,
35000: 3,
36000: 5,
37000: 4,
40000: 2,
41000: 1,
42000: 2,
43000: 2,
44000: 2,
48000: 2,
50000: 3,
51000: 3,
52000: 1,
53000: 3,
54000: 1,
55000: 4,
58000: 1,
59000: 2,
61000: 1,
62000: 4,
63000: 1,
84000: 1,
98000: 1,
1035000: 1,
1043000: 1,
1608000: 1,
1642000: 1}
"or" operation took: 1455555000 ns
"or" operation time distribution:
{0: 8569860,
1000: 1428228,
2000: 131,
3000: 31,
4000: 22,
5000: 8,
6000: 8,
7000: 6,
8000: 3,
9000: 6,
10000: 3,
11000: 4,
12000: 173,
13000: 623,
14000: 174,
15000: 446,
16000: 28,
17000: 22,
18000: 31,
19000: 9,
20000: 11,
21000: 8,
22000: 42,
23000: 72,
24000: 7,
25000: 3,
26000: 1,
27000: 5,
28000: 2,
29000: 2,
31000: 1,
33000: 1,
34000: 2,
35000: 4,
36000: 1,
37000: 1,
38000: 2,
41000: 1,
44000: 1,
45000: 2,
46000: 2,
47000: 2,
48000: 2,
49000: 1,
50000: 1,
51000: 2,
53000: 1,
61000: 1,
64000: 1,
65000: 1,
942000: 1}
我們可以看到大約 85.7% 的嘗試測(cè)量時(shí)間(8565832 / 10000000等于0.8565832和8569860 / 10000000等于0.8569860)都失敗了,因?yàn)樗粶y(cè)量了0納秒。大約 14.3% 的嘗試測(cè)量時(shí)間(1432066 / 10000000等于0.1432066和1428228/10000000等于0.1428228)測(cè)量的是1000納秒。1000而且,不用說,嘗試測(cè)量時(shí)間的其余部分(不到 0.1%)也導(dǎo)致了納秒的銷售。我們可以看到,微秒級(jí)太稀疏,無法衡量每次執(zhí)行所花費(fèi)的時(shí)間。
但是我們?nèi)匀豢梢允褂闷胀ǖ目潭瘸?。通過收集灰塵顆粒并使用尺子測(cè)量灰塵球。所以我們可以試試下面的代碼:
import time as dt
success = True
can_test = True
start = dt.time()
for i in range(10000000): # getting together the dust particles
if success and can_test: # a dust particle
pass
stop = dt.time()
time = stop - start # measure the size of the dustball
print(f'"and" operation took: {time} seconds')
start = dt.time()
for i in range(10000000): # getting together the dust particles
if success or can_test: # a dust particle
pass
stop = dt.time()
time = stop - start # measure the size of the dustball
print(f'"or" operation took: {time} seconds')
它將打印如下:
"and" operation took: 0.6261420249938965 seconds
"or" operation took: 0.48876094818115234 seconds
或者,我們可以使用一把細(xì)尺 dt.perf_counter(),它可以精確測(cè)量出每一個(gè)灰塵顆粒的大小,如下所示:
import time as dt
success = True
can_test = True
time = 0
for i in range(10000000):
start = dt.perf_counter()
if success and can_test: # a dust particle
stop = dt.perf_counter()
time += stop - start # measured by a fine-scale ruler
print(f'"and" operation took: {time} seconds')
time = 0
for i in range(10000000):
start = dt.perf_counter()
if success or can_test: # a dust particle
stop = dt.perf_counter()
time += stop - start # measured by a fine-scale ruler
print(f'"or" operation took: {time} seconds')
它將打印如下:
"and" operation took: 1.6929048989996773 seconds
"or" operation took: 1.3965214280016083 seconds
當(dāng)然,True or True比True and True!
添加回答
舉報(bào)