1 回答

TA貢獻(xiàn)1856條經(jīng)驗 獲得超11個贊
由于您是 TF2 的新手,建議您閱讀本指南。本指南涵蓋 TensorFlow 2.0 中兩種廣泛情況下的訓(xùn)練、評估和預(yù)測(推理)模型:
使用內(nèi)置 API 進(jìn)行訓(xùn)練和驗證時(例如 model.fit()、model.evaluate()、model.predict())。這在“使用內(nèi)置訓(xùn)練和評估循環(huán)”部分中有所介紹。
使用 eager execution 和 GradientTape 對象從頭開始編寫自定義循環(huán)時。這在“從頭開始編寫您自己的訓(xùn)練和評估循環(huán)”一節(jié)中有所介紹。
下面是一個程序,我在其中計算每個紀(jì)元后的梯度并附加到列表中。在程序結(jié)束時,為了簡單起見,我將轉(zhuǎn)換list
為array
。
代碼 -如果我使用多層和更大過濾器尺寸的深度網(wǎng)絡(luò),這個程序會拋出 OOM Error 錯誤
# Importing dependency
%tensorflow_version 2.x
from tensorflow import keras
from tensorflow.keras import backend as K
from tensorflow.keras import datasets
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.layers import BatchNormalization
import numpy as np
import tensorflow as tf
# Import Data
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
# Build Model
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(32,32, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(10))
# Model Summary
model.summary()
# Model Compile
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# Define the Gradient Fucntion
epoch_gradient = []
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# Define the Gradient Function
@tf.function
def get_gradient_func(model):
with tf.GradientTape() as tape:
logits = model(train_images, training=True)
loss = loss_fn(train_labels, logits)
grad = tape.gradient(loss, model.trainable_weights)
model.optimizer.apply_gradients(zip(grad, model.trainable_variables))
return grad
# Define the Required Callback Function
class GradientCalcCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
grad = get_gradient_func(model)
epoch_gradient.append(grad)
epoch = 4
print(train_images.shape, train_labels.shape)
model.fit(train_images, train_labels, epochs=epoch, validation_data=(test_images, test_labels), callbacks=[GradientCalcCallback()])
# (7) Convert to a 2 dimensiaonal array of (epoch, gradients) type
gradient = np.asarray(epoch_gradient)
print("Total number of epochs run:", epoch)
輸出 -
Model: "sequential_5"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_12 (Conv2D) (None, 30, 30, 32) 896
_________________________________________________________________
max_pooling2d_8 (MaxPooling2 (None, 15, 15, 32) 0
_________________________________________________________________
conv2d_13 (Conv2D) (None, 13, 13, 64) 18496
_________________________________________________________________
max_pooling2d_9 (MaxPooling2 (None, 6, 6, 64) 0
_________________________________________________________________
conv2d_14 (Conv2D) (None, 4, 4, 64) 36928
_________________________________________________________________
flatten_4 (Flatten) (None, 1024) 0
_________________________________________________________________
dense_11 (Dense) (None, 64) 65600
_________________________________________________________________
dense_12 (Dense) (None, 10) 650
=================================================================
Total params: 122,570
Trainable params: 122,570
Non-trainable params: 0
_________________________________________________________________
(50000, 32, 32, 3) (50000, 1)
Epoch 1/4
1563/1563 [==============================] - 109s 70ms/step - loss: 1.7026 - accuracy: 0.4081 - val_loss: 1.4490 - val_accuracy: 0.4861
Epoch 2/4
1563/1563 [==============================] - 145s 93ms/step - loss: 1.2657 - accuracy: 0.5506 - val_loss: 1.2076 - val_accuracy: 0.5752
Epoch 3/4
1563/1563 [==============================] - 151s 96ms/step - loss: 1.1103 - accuracy: 0.6097 - val_loss: 1.1122 - val_accuracy: 0.6127
Epoch 4/4
1563/1563 [==============================] - 152s 97ms/step - loss: 1.0075 - accuracy: 0.6475 - val_loss: 1.0508 - val_accuracy: 0.6371
Total number of epochs run: 4
希望這能回答您的問題。快樂學(xué)習(xí)。
添加回答
舉報