2 回答

TA貢獻(xiàn)1796條經(jīng)驗(yàn) 獲得超10個(gè)贊
In [239]: SI=SimpleImputer(verbose=1)
In [240]: SI.fit_transform(X)
/usr/local/lib/python3.6/dist-packages/sklearn/impute/_base.py:403: UserWarning: Deleting features without observed values: [5]
"observed values: %s" % missing)
Out[240]:
array([[ 2., 3., 6., 5., 4.],
[ 2., 3., 6., 15., 4.]])
調(diào)整 X:
In [241]: X = np.array([[2,3,6,5,4, np.nan],[2,3,6,15,np.nan, 4]])
In [242]: SI.fit_transform(X)
Out[242]:
array([[ 2., 3., 6., 5., 4., 4.],
[ 2., 3., 6., 15., 4., 4.]])

TA貢獻(xiàn)1804條經(jīng)驗(yàn) 獲得超3個(gè)贊
最后一列中的所有值都在數(shù)據(jù)中。因此,imputer 會(huì)刪除該列,因?yàn)樗恢佬枰逖a(bǔ)的值。請(qǐng)確保您的數(shù)據(jù)中至少有一個(gè)非值,以便允許 imputer 工作。NanNan
X = np.array([[2,3,6,5,4, np.nan],
[2,3,6,15,4, np.nan],
[1,2,6,2,4, 1] ])
SI = SimpleImputer(strategy='mean')
SI.fit_transform(X)
# Output:
[[ 2. 3. 6. 5. 4. 1.]
[ 2. 3. 6. 15. 4. 1.]
[ 1. 2. 6. 2. 4. 1.]]
添加回答
舉報(bào)