我正在嘗試實現(xiàn)VGG,但遇到上述奇怪的錯誤。我在 Ubuntu 上運行 TFv2。這可能是因為我沒有運行CUDA嗎?代碼來自此處。from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_function# Importsimport timeimport numpy as npimport tensorflow as tfimport matplotlib.pyplot as plt# tf.logging.set_verbosity(tf.logging.INFO)from tensorflow.keras.layers import Conv2D, Dense, Flattennp.random.seed(1)mnist = tf.keras.datasets.mnist(train_data, train_labels), (eval_data, eval_labels) = mnist.load_data()train_data, train_labels = train_data / 255.0, train_labels / 255.0# Add a channels dimensiontrain_data = train_data[..., tf.newaxis]train_labels = train_labels[..., tf.newaxis]index = 7plt.imshow(train_data[index].reshape(28, 28))plt.show()time.sleep(5);print("y = " + str(np.squeeze(train_labels[index])))print ("number of training examples = " + str(train_data.shape[0]))print ("number of evaluation examples = " + str(eval_data.shape[0]))print ("X_train shape: " + str(train_data.shape))print ("Y_train shape: " + str(train_labels.shape))print ("X_test shape: " + str(eval_data.shape))print ("Y_test shape: " + str(eval_labels.shape))print("done")
3 回答

紫衣仙女
TA貢獻1839條經(jīng)驗 獲得超15個贊
您可以使用 postfix compat.v1 使為 tensorflow 1.x 編寫的代碼與較新版本一起使用。
在你的情況下,這可以通過改變來實現(xiàn):
tf.layers.conv2d
自
tf.compat.v1.layers.conv2d
您可以在此處閱讀有關將張量流 v1.x 遷移到張量流 v2.x 的更多信息:
https://www.tensorflow.org/guide/migrate

喵喔喔
TA貢獻1735條經(jīng)驗 獲得超5個贊
使用 tensorflow 1.x 而不是 tensorflow 2.x 版本。但請記住,Python 3.8上沒有2.x版本。使用具有tensorflow 1.x的Python的較低版本。
python3.6 -m pip install tensorflow==1.8.0
添加回答
舉報
0/150
提交
取消