第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號(hào)安全,請(qǐng)及時(shí)綁定郵箱和手機(jī)立即綁定
已解決430363個(gè)問(wèn)題,去搜搜看,總會(huì)有你想問(wèn)的

Pandas groupby 并因此獲得具有最大值的行

Pandas groupby 并因此獲得具有最大值的行

炎炎設(shè)計(jì) 2022-07-26 20:59:22
我有一個(gè)帶有索引日期時(shí)間的 pandas 數(shù)據(jù)框,我想按秒分組,結(jié)果得到列“a_ABS”中具有最大值的行,但我只得到每列的最大值。import pandas as pddata = {'lat':[4.2471, 4.2646,4.2945, 4.2819,4.2635,4.2616,4.2731,4.2555],        'lng':[-76.7504,-76.7198,-76.7069,-76.7251,-76.726,-76.7196,-76.715,-767.118],       'a':[208.999,-894.0,-171.0,108.999,-162.0,-29.0,-143.999,-133.0],       'e':[0.105,0.209,0.934,0.150,0.158,0.347,0.333,0.089]}df = pd.DataFrame(data)df = pd.DataFrame(data, index =['2020-01-01 16:32:14.105000-05:00', '2020-01-01 16:32:14.112000-05:00',                                '2020-01-01 16:32:14.175000-05:00', '2020-01-01 16:32:14.176000-05:00',                                '2020-01-01 16:32:14.211000-05:00','2020-01-01 16:32:14.220000-05:00',                               '2020-01-01 16:32:14.310000-05:00','2020-01-01 16:32:14.327000-05:00'])df.index = pd.to_datetime(df.index)a=dfa['a_ABS']=a['a'].abs()aa=a.groupby([a.index.floor('s')], as_index=True).max()
查看完整描述

2 回答

?
牛魔王的故事

TA貢獻(xiàn)1830條經(jīng)驗(yàn) 獲得超3個(gè)贊

您快到了。使用 排序后選擇第一行a.iloc[:1]。完整代碼:


import pandas as pd


data = {'lat':[4.2471, 4.2646,4.2945, 4.2819,4.2635,4.2616,4.2731,4.2555],

        'lng':[-76.7504,-76.7198,-76.7069,-76.7251,-76.726,-76.7196,-76.715,-767.118],

       'a':[208.999,-894.0,-171.0,108.999,-162.0,-29.0,-143.999,-133.0],

       'e':[0.105,0.209,0.934,0.150,0.158,0.347,0.333,0.089]}


df = pd.DataFrame(data)

df = pd.DataFrame(data, index =['2020-01-01 16:32:14.105000-05:00', '2020-01-01 16:32:14.112000-05:00',

                                '2020-01-01 16:32:14.175000-05:00', '2020-01-01 16:32:14.176000-05:00',

                                '2020-01-01 16:32:14.211000-05:00','2020-01-01 16:32:14.220000-05:00',

                               '2020-01-01 16:32:14.310000-05:00','2020-01-01 16:32:14.327000-05:00'])

df.index = pd.to_datetime(df.index)



a=df

a['a_ABS']=a['a'].abs()


a=a.sort_values(by="a_ABS", ascending=False)

first_df=a.iloc[:1]


print(first_df)


查看完整回答
反對(duì) 回復(fù) 2022-07-26
?
繁華開(kāi)滿天機(jī)

TA貢獻(xiàn)1816條經(jīng)驗(yàn) 獲得超4個(gè)贊

像這樣的東西會(huì)起作用:


import pandas as pd


# create dataframe:

df = pd.DataFrame({

    'lat':[4.2471, 4.2646,4.2945, 4.2819,4.2635,4.2616,4.2731,4.2555],

    'lng':[-76.7504,-76.7198,-76.7069,-76.7251,-76.726,-76.7196,-76.715,-767.118],

    'a':[208.999,-894.0,-171.0,108.999,-162.0,-29.0,-143.999,-133.0],

    'e':[0.105,0.209,0.934,0.150,0.158,0.347,0.333,0.089]

})


# set index:

df.index = pd.to_datetime([

    '2020-01-01 16:32:14.105000-05:00', '2020-01-01 16:32:14.112000-05:00',

    '2020-01-01 16:32:14.175000-05:00', '2020-01-01 16:32:14.176000-05:00',

    '2020-01-01 16:32:14.211000-05:00', '2020-01-01 16:32:15.220000-05:00',

    '2020-01-01 16:32:14.310000-05:00', '2020-01-01 16:32:15.327000-05:00',

])


# create absolute column:

df['a_ABS'] = df['a'].abs()


# create seconds column:

df['seconds'] = df.index.second


# group columns by seconds:

df_grouped = df.groupby(['seconds']).max()


# extract only the 'a_ABS' column:

df_grouped = df_grouped['a_ABS']


# reset index:

df_grouped = df_grouped.reset_index()


查看完整回答
反對(duì) 回復(fù) 2022-07-26
  • 2 回答
  • 0 關(guān)注
  • 89 瀏覽
慕課專欄
更多

添加回答

舉報(bào)

0/150
提交
取消
微信客服

購(gòu)課補(bǔ)貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動(dòng)學(xué)習(xí)伙伴

公眾號(hào)

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號(hào)