第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號(hào)安全,請(qǐng)及時(shí)綁定郵箱和手機(jī)立即綁定
已解決430363個(gè)問題,去搜搜看,總會(huì)有你想問的

為什么自適應(yīng)閾值圖像小于原始圖像?

為什么自適應(yīng)閾值圖像小于原始圖像?

炎炎設(shè)計(jì) 2022-07-26 16:55:19
我正在嘗試在最終將用于形狀檢測(cè)的實(shí)時(shí)流上使用adapativeThreshold。常規(guī)閾值沒有顯示足夠的我想看到的。當(dāng)我使用下面的代碼時(shí),常規(guī)閾值按預(yù)期出現(xiàn),但由于某種原因自適應(yīng)閾值比原來的要薄得多,我在視圖中看不到任何東西。好像有什么事情發(fā)生了,但我不知道是什么。關(guān)于如何使自適應(yīng)閾值窗口全尺寸的任何想法?這是我在每個(gè)窗口中運(yùn)行程序時(shí)看到的:#import packagesfrom documentscanner.pyimagesearch.transform import four_point_transformfrom pyimagesearch.shapedetector import ShapeDetectorfrom skimage.filters import threshold_localimport numpy as npimport cv2import imutilsdef draw_Contours(screen, points):    cv2.drawContours(screen, [points], -1, (0, 255, 0), 2)    cv2.imshow("Outline", screen)def nothing(x):    #any operation    pass#access video cameracap = cv2.VideoCapture(0)cv2.namedWindow('Trackbars')cv2.createTrackbar('min_edge', 'Trackbars', 75, 100, nothing)cv2.createTrackbar('max_edge', 'Trackbars', 110,300, nothing)while True:    _, frame = cap.read()       #read video camera data    minedge = cv2.getTrackbarPos('min_edge', 'Trackbars')    maxedge = cv2.getTrackbarPos('max_edge', 'Trackbars')    #convert image to gray scale    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)    gray = cv2.GaussianBlur(gray, (5, 5), 0)    #blur = cv2.GaussianBlur(frame, (5, 5), 0)    #edged = cv2.Canny(gray, minedge, maxedge)    #threshhold instead of edging    thresh = cv2.threshold(gray, 60, 255, cv2.THRESH_BINARY)[1]    thresh2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\                                    cv2.THRESH_BINARY, 11, 2)[1]    thresh3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,\                                    cv2.THRESH_BINARY, 11, 2)[1]    #find contours in edges image, keeping the largest ones, and initialize the screen contour/shapedetect    cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)    cnts = imutils.grab_contours(cnts)    sd = ShapeDetector()    cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]
查看完整描述

1 回答

?
慕沐林林

TA貢獻(xiàn)2016條經(jīng)驗(yàn) 獲得超9個(gè)贊

而不是使用


thresh2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\

                                cv2.THRESH_BINARY, 11, 2)[1]

thresh3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,\

                                cv2.THRESH_BINARY, 11, 2)[1]

在沒有 numpy 索引的情況下使用它,然后就不會(huì)發(fā)生此錯(cuò)誤。


thresh2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\

                                cv2.THRESH_BINARY, 11, 2) # don't use [1] 

thresh3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,\

                                cv2.THRESH_BINARY, 11, 2)

這是因?yàn)檎i撝堤幚矸祷貎蓚€(gè)值,而自適應(yīng)閾值處理只返回一個(gè)值。


查看完整回答
反對(duì) 回復(fù) 2022-07-26
  • 1 回答
  • 0 關(guān)注
  • 103 瀏覽
慕課專欄
更多

添加回答

舉報(bào)

0/150
提交
取消
微信客服

購課補(bǔ)貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動(dòng)學(xué)習(xí)伙伴

公眾號(hào)

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號(hào)