第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號安全,請及時綁定郵箱和手機立即綁定
已解決430363個問題,去搜搜看,總會有你想問的

提取部分 json 鍵值并組合

提取部分 json 鍵值并組合

青春有我 2022-06-02 15:24:20
我有這個 json 數(shù)據(jù)集。從這個數(shù)據(jù)集中,我只想要“column_names”鍵及其值和“data”鍵及其值。column_names 的每個值對應(yīng)于數(shù)據(jù)值。我如何在python中只組合這兩個鍵進行分析{"dataset":{"id":42635350,"dataset_code":"MSFT","column_names":["Date","Open","High","Low","Close","Volume","Dividend","Split", "Adj_Open","Adj_High","Adj_Low","Adj_Close","Adj_Volume"],"frequency":"daily","type":"Time Series","data":[["2017-12-28",85.9,85.93,85.55,85.72,10594344.0,0.0,1.0,83.1976157998082,83.22667201021558,82.85862667838872,83.0232785373639,10594344.0],["2017-12-27",85.65,85.98,85.215,85.71,14678025.0,0.0,1.0,82.95548071308001,83.27509902756123,82.53416566217294,83.01359313389476,14678025.0]for cnames in data['dataset']['column_names']:print(cnames)for cdata in data['dataset']['data']:print(cdata)For 循環(huán)給了我想要的列名和數(shù)據(jù)值,但我不知道如何將它組合起來,并將其作為 python 數(shù)據(jù)框進行分析。Ref:以上代碼來自qudal網(wǎng)站
查看完整描述

3 回答

?
慕田峪9158850

TA貢獻1794條經(jīng)驗 獲得超8個贊

data = {

  "dataset": {

      "id":42635350,"dataset_code":"MSFT",

      "column_names": ["Date","Open","High","Low","Close","Volume","Dividend","Split","Adj_Open","Adj_High","Adj_Low","Adj_Close","Adj_Volume"],

      "frequency":"daily",

      "type":"Time Series",

      "data":[

          ["2017-12-28",85.9,85.93,85.55,85.72,10594344.0,0.0,1.0,83.1976157998082, 83.22667201021558,82.85862667838872,83.0232785373639,10594344.0], 

          ["2017-12-27",85.65,85.98,85.215,85.71,14678025.0,0.0,1.0,82.95548071308001,83.27509902756123,82.53416566217294,83.01359313389476,14678025.0]

      ]

  }

}

下面的代碼應(yīng)該做你想做的嗎?


import pandas as pd

df = pd.DataFrame(data, columns = data['dataset']['column_names'])

for i, data_row in enumerate(data['dataset']['data']):

    df.loc[i] = data_row


查看完整回答
反對 回復(fù) 2022-06-02
?
慕娘9325324

TA貢獻1783條經(jīng)驗 獲得超4個贊

以下代碼段應(yīng)該適合您

import pandas as pd
df = pd.DataFrame(data['dataset']['data'],columns=data['dataset']['column_names'])

檢查以下鏈接以了解更多信息 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html


查看完整回答
反對 回復(fù) 2022-06-02
?
慕妹3242003

TA貢獻1824條經(jīng)驗 獲得超6個贊

cols = data['dataset']['column_names']

data = data['dataset']['data']

這很簡單


labeled_data = [dict(zip(cols, d)) for d in data]


查看完整回答
反對 回復(fù) 2022-06-02
  • 3 回答
  • 0 關(guān)注
  • 159 瀏覽
慕課專欄
更多

添加回答

舉報

0/150
提交
取消
微信客服

購課補貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動學(xué)習(xí)伙伴

公眾號

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號