1 回答

TA貢獻(xiàn)1856條經(jīng)驗(yàn) 獲得超17個(gè)贊
我們需要numeric列能夠?qū)λ鼈冞M(jìn)行計(jì)算,在這種情況下sum:
#Example dataframe
df = pd.DataFrame({'date':['2019-01-04', '2019-01-04', '2019-01-03', '2018-12-22', '2018-08-31'],
'replies_count':['46', '143', '64', '154', '50'],
'polarity':[10, 20, 30, 40, 50]})
print(df)
date replies_count polarity
0 2019-01-04 46 10
1 2019-01-04 143 20
2 2019-01-03 64 30
3 2018-12-22 154 40
4 2018-08-31 50 50
檢查列的類型
print(df.dtypes)
date object
replies_count object
polarity int64
dtype: object
應(yīng)用groupby與sum
print(df.groupby('date').sum())
polarity
date
2018-08-31 50
2018-12-22 40
2019-01-03 30
2019-01-04 30
現(xiàn)在將replies_count列的類型更改為int并執(zhí)行相同groupby的操作sum
df['replies_count'] = df['replies_count'].astype(int)
print(df.groupby('date').sum())
replies_count polarity
date
2018-08-31 50 50
2018-12-22 154 40
2019-01-03 64 30
2019-01-04 189 30
正如我們所見(jiàn),該列現(xiàn)在已包含在內(nèi)。
添加回答
舉報(bào)