我們在 AWS 中將 h2o 作為單節(jié)點集群運行:R is connected to the H2O cluster: H2O cluster uptime: 5 seconds 217 milliseconds H2O cluster timezone: Etc/UTC H2O data parsing timezone: UTC H2O cluster version: 3.17.0.4153 H2O cluster version age: 10 months and 4 days !!! H2O cluster name: h2o-8ba55ebb-7d49-41bd-b4e2-d7be45b5f53e H2O cluster total nodes: 1 H2O cluster total memory: 22.20 GB H2O cluster total cores: 8 H2O cluster allowed cores: 8 H2O cluster healthy: TRUE H2O Connection ip: localhost H2O Connection port: 54321 H2O Connection proxy: NA H2O Internal Security: FALSE H2O API Extensions: XGBoost, Algos, AutoML, Core V3, Core V4 R Version: R version 3.4.3 (2017-11-30) 并使用 nthreads -1 從 java 啟動 h2o:java -ea -Xmx25g -jar /path/to/h2o.jar -name unique-cloud-name -ip localhost -ice_root /tmp/h2o-tmp -nthreads -1我們想知道 h2o 是否在單節(jié)點集群中進行并行處理/使用所有可用和允許的內核。當我們在命令行中執(zhí)行 top -H 時,我們確實看到了 8 個活動的 java 進程,并想知道它們是否來自 h2o 并幫助生成我們的模型。
添加回答
舉報
0/150
提交
取消