1 回答

TA貢獻(xiàn)1853條經(jīng)驗(yàn) 獲得超9個(gè)贊
在 numpy 中:
您可以使用np.newaxis,np.expand_dims和reshape()添加維度。
import numpy as np
train_data = np.random.normal(size=(100,28,28))
print(train_data.shape)
new_a = train_data[...,np.newaxis]
print(new_a.shape)
new_a = np.expand_dims(train_data,axis=-1)
print(new_a.shape)
new_a = train_data.reshape(100,28,28,1)
print(new_a.shape)
(100, 28, 28)
(100, 28, 28, 1)
(100, 28, 28, 1)
(100, 28, 28, 1)
在張量流中:
您可以使用tf.newaxis,tf.expand_dims和tf.reshape添加維度。
import tensorflow as tf
train_data = tf.placeholder(shape=(None,28,28),dtype=tf.float64)
print(train_data.shape)
new_a = train_data[...,tf.newaxis]
print(new_a.shape)
new_a = tf.reshape(train_data,shape=(-1,28,28,1))
print(new_a.shape)
new_a = tf.expand_dims(train_data,axis=-1)
print(new_a.shape)
(?, 28, 28)
(?, 28, 28, 1)
(?, 28, 28, 1)
(?, 28, 28, 1)
添加回答
舉報(bào)