我正在為 Keras 構(gòu)建一個生成器,以便能夠加載我的數(shù)據(jù)集圖像,因為它對我的 ram 來說有點大。我像這樣構(gòu)建了生成器:# import the necessary packagesimport tensorflowfrom tensorflow import kerasfrom keras.preprocessing.image import ImageDataGeneratorimport matplotlib.pyplot as pltfrom sklearn.preprocessing import OneHotEncoderimport numpy as npimport pandas as pdfrom tqdm import tqdm#loadingpath_to_txt = "/content/test/leafsnap-dataset/leafsnap-dataset- images_improved.txt"df = pd.read_csv(path_to_txt ,sep='\t')arr = np.array(df)#epochs and steps:NUM_TRAIN_IMAGES = 0NUM_EPOCHS = 30def image_generator(arr, bs, mode="train", aug=None): while True: images = [] labels = [] for row in arr: if len(images) < bs: img = (cv2.resize(cv2.imread("/content/test/leafsnap-dataset/" + row[0]),(224,224))) images.append(img) labels.append([row[2]]) NUM_TRAIN_IMAGES += 1 else: break if aug is not None: (images, labels) = next(aug.flow(np.array(images),labels, batch_size=bs)) obj = OneHotEncoder() values = obj.fit_transform(labels).toarray() yield (np.array(images), labels)然后我從順序模型中調(diào)用 fit_generator (cnn 一直工作,直到出現(xiàn) OOM 錯誤)#create the augmentation function: aug = ImageDataGenerator(rotation_range=20, zoom_range=0.15, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.15, horizontal_flip=True, fill_mode="nearest")#create the generator:gen = image_generator(arr, bs = 32, mode = "train", aug = aug)history = model.fit_generator(image_generator, steps_per_epoch = NUM_TRAIN_IMAGES, epochs = NUM_EPOCHS)從這里,我收到此錯誤:# Create generator from NumPy or EagerTensor Input.--> 377 num_samples = int(nest.flatten(data)[0].shape[0])378 if batch_size is None:379 raise ValueError('You must specify `batch_size`')AttributeError: 'function' object has no attribute 'shape'
1 回答

慕森王
TA貢獻1777條經(jīng)驗 獲得超3個贊
我在這里看到兩個主要錯誤。
首先,您的生成器函數(shù)的內(nèi)存效率不高。因為您首先加載所有圖像(while 循環(huán))。您應(yīng)該遍歷圖像文件并在循環(huán)內(nèi)產(chǎn)生帶有標(biāo)簽的圖像的 np.array。
其次,當(dāng)您應(yīng)該使用其返回的對象 - gen 時,您將生成器函數(shù)名稱傳遞給 fit_generator。
添加回答
舉報
0/150
提交
取消