2 回答

TA貢獻(xiàn)1851條經(jīng)驗(yàn) 獲得超5個(gè)贊
您可以像這樣實(shí)現(xiàn)自定義回調(diào):
class CustomModelCheckpoint(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
# logs is a dictionary
print(f"epoch: {epoch}, train_acc: {logs['acc']}, valid_acc: {logs['val_acc']}")
if logs['val_acc'] > logs['acc']: # your custom condition
self.model.save('model.h5', overwrite=True)
cbk = CustomModelCheckpoint()
model.fit(....callbacks=[cbk]...)

TA貢獻(xiàn)2021條經(jīng)驗(yàn) 獲得超8個(gè)贊
在https://keras.io/callbacks/查看回調(diào) ModelCheckpoint
您可以保存每個(gè)時(shí)期的模型,并在文件名中包含準(zhǔn)確度/驗(yàn)證準(zhǔn)確度(或之后檢查歷史對(duì)象)。
添加回答
舉報(bào)