第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號(hào)安全,請(qǐng)及時(shí)綁定郵箱和手機(jī)立即綁定
已解決430363個(gè)問(wèn)題,去搜搜看,總會(huì)有你想問(wèn)的

Keras 錯(cuò)誤:TypeError:'int' 對(duì)象不可迭代

Keras 錯(cuò)誤:TypeError:'int' 對(duì)象不可迭代

慕工程0101907 2021-09-28 17:03:11
CONST_TRAINTING_SEQUENCE_LENGTH = 12CONST_TESTING_CASES = 5def dataNormalization(data):    return [(datum - data[0]) / data[0] for datum in data]def dataDeNormalization(data, base):    return [(datum + 1) * base for datum in data]def getDeepLearningData(ticker):    # Step 1. Load data    data = pandas.read_csv('/Users/yindeyong/Desktop/Django_Projects/pythonstock/data/Intraday/' + ticker + '.csv')[        'close'].tolist()    # Step 2. Building Training data    dataTraining = []    for i in range(len(data) - CONST_TESTING_CASES * CONST_TRAINTING_SEQUENCE_LENGTH):        dataSegment = data[i:i + CONST_TRAINTING_SEQUENCE_LENGTH + 1]        dataTraining.append(dataNormalization(dataSegment))    dataTraining = numpy.array(dataTraining)    numpy.random.shuffle(dataTraining)    X_Training = dataTraining[:, :-1]    Y_Training = dataTraining[:, -1]    # Step 3. Building Testing data    X_Testing = []    Y_Testing_Base = []    for i in range(CONST_TESTING_CASES, 0, -1):        dataSegment = data[-(i + 1) * CONST_TRAINTING_SEQUENCE_LENGTH:-i * CONST_TRAINTING_SEQUENCE_LENGTH]        Y_Testing_Base.append(dataSegment[0])        X_Testing.append(dataNormalization(dataSegment))    Y_Testing = data[-CONST_TESTING_CASES * CONST_TRAINTING_SEQUENCE_LENGTH:]    X_Testing = numpy.array(X_Testing)    Y_Testing = numpy.array(Y_Testing)    # Step 4. Reshape for deep learning    X_Training = numpy.reshape(X_Training, (X_Training.shape[0], X_Training.shape[1], 1))我有一個(gè)錯(cuò)誤:文件“/Users/yindeyong/Desktop/Django_Projects/envs/stockenv/lib/python3.6/site-packages/keras/engine/base_layer.py”,第147行,在init batch_size中,) + tuple(kwargs['input_shape' ]) TypeError: 'int' 對(duì)象不可迭代我試圖將input_shape=1更改 為input_shape=(1,),然后又出現(xiàn)了另一個(gè)錯(cuò)誤:ValueError:輸入 0 與層 lstm_1 不兼容:預(yù)期 ndim=3,發(fā)現(xiàn) ndim=2
查看完整描述

2 回答

?
紅顏莎娜

TA貢獻(xiàn)1842條經(jīng)驗(yàn) 獲得超13個(gè)贊

LSTM 是處理序列的循環(huán)網(wǎng)絡(luò)

序列必須具有lengthfeatures,您的輸入形狀必須包含以下兩個(gè):input_shape=(length, features).

您的數(shù)據(jù)也必須相應(yīng)地進(jìn)行整形,使用(sequences, length, features).

對(duì)于可變長(zhǎng)度,您可以使用input_shape=(None,features).


查看完整回答
反對(duì) 回復(fù) 2021-09-28
?
汪汪一只貓

TA貢獻(xiàn)1898條經(jīng)驗(yàn) 獲得超8個(gè)贊

您不能傳遞input_shape整數(shù),它必須是可迭代的,例如(1,). 看起來(lái)你的 X_training 形狀不對(duì)。您必須重塑它,使其適合 input_shape。


查看完整回答
反對(duì) 回復(fù) 2021-09-28
  • 2 回答
  • 0 關(guān)注
  • 216 瀏覽
慕課專欄
更多

添加回答

舉報(bào)

0/150
提交
取消
微信客服

購(gòu)課補(bǔ)貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動(dòng)學(xué)習(xí)伙伴

公眾號(hào)

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號(hào)