我有一個這樣結(jié)構(gòu)的數(shù)據(jù)框:df_all: day_time LCLid energy(kWh/hh)2014-02-08 23:00:00 MAC000006 0.0772014-02-08 23:30:00 MAC000006 0.079 ...2014-02-08 23:00:00 MAC000007 0.045 ...我想用先前和尾隨值填充的數(shù)據(jù)中缺少四個連續(xù)的日期時間(跨所有 LCLid)。如果數(shù)據(jù)幀被拆分為子數(shù)據(jù)幀 (df),每個 LCLid 一個,例如:gb = df.groupby('LCLid') df_list = [gb.get_group(x) for x in gb.groups]然后我可以為 df_list 中的每個 df 執(zhí)行此操作:#valid data before gapprev_row = df.loc['2013-09-09 22:30:00'].copy()#valid data after gappost_row = df.loc['2013-09-10 01:00:00'].copy()df.loc[pd.to_datetime('2013-09-09 23:00:00')] = prev_rowdf.loc[pd.to_datetime('2013-09-09 23:30:00')] = prev_rowdf.loc[pd.to_datetime('2013-09-10 00:00:00')] = post_rowdf.loc[pd.to_datetime('2013-09-10 00:30:00')] = post_rowdf = df.sort_index()我怎樣才能在 df_all 上做到這一點(diǎn),一次又一次地用來自每個 LCLid 的“有效”數(shù)據(jù)填充缺失的數(shù)據(jù)?
添加回答
舉報
0/150
提交
取消