3 回答

TA貢獻(xiàn)1836條經(jīng)驗(yàn) 獲得超5個(gè)贊
from keras.models import load_model
from keras.preprocessing import image
model=load_model("/blah/blah/blah")
img = image.load_img(path, color_mode = "grayscale", target_size=(128, 128, 1))
y = image.img_to_array(img)
y = np.expand_dims(y, axis=0)
images = np.vstack([y])
classes = model.predict(images/255.0, batch_size=8, verbose=0)

TA貢獻(xiàn)1821條經(jīng)驗(yàn) 獲得超6個(gè)贊
predict 返回一個(gè)包含預(yù)測(cè)的列表。你可以用這個(gè)
results = model.predict(data)
for result in results:
print(str(result))
這將返回
0.99
0.87
0.75
或者如果你在另一個(gè)列表中有這些類,你應(yīng)該這樣做。
res = model.predict(data)
results = [[i,r] for i,r in enumerate(res)]
results.sort(key=lambda x: x[1], reverse=True)
for r in results:
print(classes[r[0]], str(r[1])))
這返回
("classA", 0.99)
("classB", 0.95)
添加回答
舉報(bào)