1 回答

TA貢獻(xiàn)1836條經(jīng)驗 獲得超5個贊
您可能會發(fā)現(xiàn)NumPy的邊緣大幅加速,繞過了與pd.Series
對象相關(guān)的開銷。
# Python 3.6.0, Pandas 0.19.2, NumPy 1.11.3
def days_lambda(dfx):
return (dfx['y']-dfx['x']).apply(lambda x: x.days)
def days_pd(dfx):
return (dfx['y']-dfx['x']).dt.days
def days_np(dfx):
return (dfx['y'].values-dfx['x'].values) / np.timedelta64(1, 'D')
# check results are identical
assert (days_lambda(dfx).values == days_pd(dfx).values).all()
assert (days_lambda(dfx).values == days_np(dfx)).all()
dfx = pd.concat([dfx]*100000)
%timeit days_lambda(dfx) # 5.02 s per loop
%timeit days_pd(dfx) # 5.6 s per loop
%timeit days_np(dfx) # 4.72 ms per loop
添加回答
舉報