第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號(hào)安全,請(qǐng)及時(shí)綁定郵箱和手機(jī)立即綁定
已解決430363個(gè)問題,去搜搜看,總會(huì)有你想問的

keras'NoneType'對(duì)象沒有屬性'_inbound_nodes'

keras'NoneType'對(duì)象沒有屬性'_inbound_nodes'

www說 2021-05-25 21:23:00
我正在嘗試編寫一個(gè)鑒別器,用于評(píng)估圖像的色塊。因此,我從輸入生成32x32不重疊的色塊,然后將它們串聯(lián)在新軸上。我使用時(shí)間分布層的原因是最后,鑒別器應(yīng)該將整個(gè)圖像評(píng)估為真還是假。因此,我試圖分別對(duì)每個(gè)補(bǔ)丁執(zhí)行前向傳遞,然后通過lambda層平均各個(gè)補(bǔ)丁的鑒別器輸出:def my_average(x):    x = K.mean(x, axis=1)    return xdef my_average_shape(input_shape):    shape = list(input_shape)    del shape[1]    return tuple(shape)def defineD(input_shape):    a = Input(shape=(256, 256, 1))    cropping_list = []    n_patches = 256/32    for x in range(256/32):        for y in  range(256/32):            cropping_list += [             K.expand_dims(                Cropping2D((( x * 32,  256 - (x+1) * 32), ( y * 32,  256 - (y+1) * 32)))(a)                , axis=1)            ]    x = Concatenate(1)(cropping_list)    x = TimeDistributed(Conv2D(4 * 8, 3, padding='same'))(x) #     x = TimeDistributed(MaxPooling2D())(x)    x = TimeDistributed(LeakyReLU())(x)                  # 16    x = TimeDistributed(Conv2D(4 * 16, 3, padding='same'))(x)    x = TimeDistributed(MaxPooling2D())(x)    x = TimeDistributed(LeakyReLU())(x)                  # 8    x = TimeDistributed(Conv2D(4 * 32, 3, padding='same'))(x)    x = TimeDistributed(MaxPooling2D())(x)    x = TimeDistributed(LeakyReLU())(x)                  # 4    x = TimeDistributed(Flatten())(x)    x = TimeDistributed(Dense(2, activation='sigmoid'))(x)    x = Lambda(my_average, my_average_shape)(x)    return keras.models.Model(inputs=a, outputs=x)由于某種原因,我得到以下錯(cuò)誤:File "testing.py", line 41, in <module>    defineD((256,256,1) )  File "testing.py", line 38, in defineD    return keras.models.Model(inputs=a, outputs=x)  File "/usr/local/lib/python2.7/dist-packages/keras/legacy/interfaces.py", line 91, in wrapper    return func(*args, **kwargs)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 93, in __init__    self._init_graph_network(*args, **kwargs)  File "/usr/local/lib/python2.7/dist-packages/keras/engine/network.py", line 237, in _init_graph_network    self.inputs, self.outputs)  
查看完整描述

2 回答

?
LEATH

TA貢獻(xiàn)1936條經(jīng)驗(yàn) 獲得超7個(gè)贊

您需要將裁剪操作放在一個(gè)函數(shù)中,然后在Lambda圖層中使用該函數(shù):


def my_cropping(a):

    cropping_list = []

    n_patches = 256/32

    for x in range(256//32):

        for y in  range(256//32):


            cropping_list += [

             K.expand_dims(

                Cropping2D((( x * 32,  256 - (x+1) * 32), ( y * 32,  256 - (y+1) * 32)))(a)

                , axis=1)

            ]

    return cropping_list

要使用它:


cropping_list = Lambda(my_cropping)(a)


查看完整回答
反對(duì) 回復(fù) 2021-06-01
?
眼眸繁星

TA貢獻(xiàn)1873條經(jīng)驗(yàn) 獲得超9個(gè)贊

我遇到了同樣的問題,它確實(shí)通過在 @today 提議的張量周圍包裹一個(gè) Lambda 層來解決。


感謝您的提示,它為我指明了正確的方向。我想將向量變成對(duì)角矩陣


我想將矢量與正方形圖像連接起來,并通過在diag矩陣中旋轉(zhuǎn)矢量來實(shí)現(xiàn)。它適用于以下代碼段:


def diagonalize(vector):

  diagonalized = tf.matrix_diag(vector) # make diagonal matrix from vector

  out_singlechan = tf.expand_dims(diagonalized, -1) # append 1 channel to get compatible to the multichannel image dim

  return out_singlechan


lstm_out = Lambda(diagonalize, output_shape=(self.img_shape[0],self.img_shape[1],1))(lstm_out)


查看完整回答
反對(duì) 回復(fù) 2021-06-01
  • 2 回答
  • 0 關(guān)注
  • 178 瀏覽
慕課專欄
更多

添加回答

舉報(bào)

0/150
提交
取消
微信客服

購(gòu)課補(bǔ)貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動(dòng)學(xué)習(xí)伙伴

公眾號(hào)

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號(hào)