2 回答

TA貢獻(xiàn)1936條經(jīng)驗(yàn) 獲得超7個(gè)贊
您需要將裁剪操作放在一個(gè)函數(shù)中,然后在Lambda圖層中使用該函數(shù):
def my_cropping(a):
cropping_list = []
n_patches = 256/32
for x in range(256//32):
for y in range(256//32):
cropping_list += [
K.expand_dims(
Cropping2D((( x * 32, 256 - (x+1) * 32), ( y * 32, 256 - (y+1) * 32)))(a)
, axis=1)
]
return cropping_list
要使用它:
cropping_list = Lambda(my_cropping)(a)

TA貢獻(xiàn)1873條經(jīng)驗(yàn) 獲得超9個(gè)贊
我遇到了同樣的問題,它確實(shí)通過在 @today 提議的張量周圍包裹一個(gè) Lambda 層來解決。
感謝您的提示,它為我指明了正確的方向。我想將向量變成對(duì)角矩陣
我想將矢量與正方形圖像連接起來,并通過在diag矩陣中旋轉(zhuǎn)矢量來實(shí)現(xiàn)。它適用于以下代碼段:
def diagonalize(vector):
diagonalized = tf.matrix_diag(vector) # make diagonal matrix from vector
out_singlechan = tf.expand_dims(diagonalized, -1) # append 1 channel to get compatible to the multichannel image dim
return out_singlechan
lstm_out = Lambda(diagonalize, output_shape=(self.img_shape[0],self.img_shape[1],1))(lstm_out)
添加回答
舉報(bào)