3 回答

TA貢獻(xiàn)1777條經(jīng)驗(yàn) 獲得超3個(gè)贊
我將超越答案。
因此,您可以使用@pandas_udf在pyspark中實(shí)現(xiàn)類(lèi)似pandas.groupby()。apply的邏輯,這是矢量化方法,并且比簡(jiǎn)單的udf更快。
from pyspark.sql.functions import pandas_udf,PandasUDFType
df3 = spark.createDataFrame(
[("a", 1, 0), ("a", -1, 42), ("b", 3, -1), ("b", 10, -2)],
("key", "value1", "value2")
)
from pyspark.sql.types import *
schema = StructType([
StructField("key", StringType()),
StructField("avg_value1", DoubleType()),
StructField("avg_value2", DoubleType()),
StructField("sum_avg", DoubleType()),
StructField("sub_avg", DoubleType())
])
@pandas_udf(schema, functionType=PandasUDFType.GROUPED_MAP)
def g(df):
gr = df['key'].iloc[0]
x = df.value1.mean()
y = df.value2.mean()
w = df.value1.mean() + df.value2.mean()
z = df.value1.mean() - df.value2.mean()
return pd.DataFrame([[gr]+[x]+[y]+[w]+[z]])
df3.groupby("key").apply(g).show()
您將獲得以下結(jié)果:
+---+----------+----------+-------+-------+
|key|avg_value1|avg_value2|sum_avg|sub_avg|
+---+----------+----------+-------+-------+
| b| 6.5| -1.5| 5.0| 8.0|
| a| 0.0| 21.0| 21.0| -21.0|
+---+----------+----------+-------+-------+
因此,您可以在分組數(shù)據(jù)中的其他字段之間進(jìn)行更多計(jì)算,并將它們以列表格式添加到數(shù)據(jù)框中。
添加回答
舉報(bào)