3 回答

TA貢獻1811條經驗 獲得超4個贊
從廣義上說深度學習的網絡結構也是多層神經網絡的一種。
傳統(tǒng)意義上的多層神經網絡是只有輸入層、隱藏層、輸出層。其中隱藏層的層數(shù)根據(jù)需要而定,沒有明確的理論推導來說明到底多少層合適。
而深度學習中最著名的卷積神經網絡CNN,在原來多層神經網絡的基礎上,加入了特征學習部分,這部分是模仿人腦對信號處理上的分級的。具體操作就是在原來的全連接的層前面加入了部分連接的卷積層與降維層,而且加入的是一個層級。
輸入層 - 卷積層 -降維層 -卷積層 - 降維層 -- .... -- 隱藏層 -輸出層
簡單來說,原來多層神經網絡做的步驟是:特征映射到值。特征是人工挑選。
深度學習做的步驟是 信號->特征->值。 特征是由網絡自己選擇。

TA貢獻1829條經驗 獲得超7個贊
這兩個概念實際上是互相交叉的,例如,卷積神經網絡(Convolutional neural networks,簡稱CNNs)就是一種深度的監(jiān)督學習下的機器學習模型,而深度置信網(Deep Belief Nets,簡稱DBNs)就是一種無監(jiān)督學習下的機器學習模型。
深度學習的概念源于人工神經網絡的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發(fā)現(xiàn)數(shù)據(jù)的分布式特征表示。
深度學習的概念由Hinton等人于2006年提出?;谏钚哦染W(DBN)提出非監(jiān)督貪心逐層訓練算法,為解決深層結構相關的優(yōu)化難題帶來希望,隨后提出多層自動編碼器深層結構。此外Lecun等人提出的卷積神經網絡是第一個真正多層結構學習算法,它利用空間相對關系減少參數(shù)數(shù)目以提高訓練性能。
- 3 回答
- 0 關注
- 1153 瀏覽
添加回答
舉報