1 回答

TA貢獻(xiàn)1877條經(jīng)驗(yàn) 獲得超6個(gè)贊
解決問(wèn)題的層面不一樣
首先,Hadoop和Apache Spark兩者都是大數(shù)據(jù)框架,但是各自存在的目的不盡相同。Hadoop實(shí)質(zhì)上更多是一個(gè)分布式數(shù)據(jù)基礎(chǔ)設(shè)施: 它將巨大的數(shù)據(jù)集分派到一個(gè)由普通計(jì)算機(jī)組成的集群中的多個(gè)節(jié)點(diǎn)進(jìn)行存儲(chǔ),意味著您不需要購(gòu)買(mǎi)和維護(hù)昂貴的服務(wù)器硬件。
同時(shí),Hadoop還會(huì)索引和跟蹤這些數(shù)據(jù),讓大數(shù)據(jù)處理和分析效率達(dá)到前所未有的高度。Spark,則是那么一個(gè)專(zhuān)門(mén)用來(lái)對(duì)那些分布式存儲(chǔ)的大數(shù)據(jù)進(jìn)行處理的工具,它并不會(huì)進(jìn)行分布式數(shù)據(jù)的存儲(chǔ)。
兩者可合可分
Hadoop除了提供為大家所共識(shí)的HDFS分布式數(shù)據(jù)存儲(chǔ)功能之外,還提供了叫做MapReduce的數(shù)據(jù)處理功能。所以這里我們完全可以?huà)侀_(kāi)Spark,使用Hadoop自身的MapReduce來(lái)完成數(shù)據(jù)的處理。
相反,Spark也不是非要依附在Hadoop身上才能生存。但如上所述,畢竟它沒(méi)有提供文件管理系統(tǒng),所以,它必須和其他的分布式文件系統(tǒng)進(jìn)行集成才能運(yùn)作。這里我們可以選擇Hadoop的HDFS,也可以選擇其他的基于云的數(shù)據(jù)系統(tǒng)平臺(tái)。但Spark默認(rèn)來(lái)說(shuō)還是被用在Hadoop上面的,畢竟,大家都認(rèn)為它們的結(jié)合是最好的。
添加回答
舉報(bào)