第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號安全,請及時綁定郵箱和手機立即綁定
已解決430363個問題,去搜搜看,總會有你想問的

hadoop和spark的區(qū)別

hadoop和spark的區(qū)別

夢里花落0921 2018-12-10 12:04:11
hadoop和spark的區(qū)別
查看完整描述

1 回答

?
慕哥9229398

TA貢獻1877條經(jīng)驗 獲得超6個贊

解決問題的層面不一樣
首先,Hadoop和Apache Spark兩者都是大數(shù)據(jù)框架,但是各自存在的目的不盡相同。Hadoop實質(zhì)上更多是一個分布式數(shù)據(jù)基礎(chǔ)設(shè)施: 它將巨大的數(shù)據(jù)集分派到一個由普通計算機組成的集群中的多個節(jié)點進行存儲,意味著您不需要購買和維護昂貴的服務(wù)器硬件。
同時,Hadoop還會索引和跟蹤這些數(shù)據(jù),讓大數(shù)據(jù)處理和分析效率達到前所未有的高度。Spark,則是那么一個專門用來對那些分布式存儲的大數(shù)據(jù)進行處理的工具,它并不會進行分布式數(shù)據(jù)的存儲。
兩者可合可分
Hadoop除了提供為大家所共識的HDFS分布式數(shù)據(jù)存儲功能之外,還提供了叫做MapReduce的數(shù)據(jù)處理功能。所以這里我們完全可以拋開Spark,使用Hadoop自身的MapReduce來完成數(shù)據(jù)的處理。
相反,Spark也不是非要依附在Hadoop身上才能生存。但如上所述,畢竟它沒有提供文件管理系統(tǒng),所以,它必須和其他的分布式文件系統(tǒng)進行集成才能運作。這里我們可以選擇Hadoop的HDFS,也可以選擇其他的基于云的數(shù)據(jù)系統(tǒng)平臺。但Spark默認來說還是被用在Hadoop上面的,畢竟,大家都認為它們的結(jié)合是最好的。


查看完整回答
反對 回復(fù) 2018-12-22
  • 1 回答
  • 0 關(guān)注
  • 806 瀏覽
慕課專欄
更多

添加回答

舉報

0/150
提交
取消
微信客服

購課補貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動學習伙伴

公眾號

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號