import?os
import?model
import?tensorflow?as?tf
import?input_data
data?=?input_data.read_data_sets('MNIST_data',?one_hot=True)
#model
with?tf.variable_scope("convolutional"):
????x?=?tf.placeholder(tf.float32,?[None,784],?name='x')
????keep_prob?=?tf.placeholder(tf.float32)
????y,?variables?=?model.convolutional(x,?keep_prob)
#train
y_?=?tf.placeholder(tf.float32,?[None,?10],?name='y')
cross_entropy?=?-tf.reduce_sum(y_?*?tf.log(y))
train_step?=?tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction?=?tf.equal(tf.argmax(y,?1),?tf.argmax(y_,?1))
accuracy?=?tf.reduce_mean(tf.cast(correct_prediction,?tf.float32))
saver?=?tf.train.Saver(variables)
with?tf.Session(?)?as?sess:
????merged_summary_op?=?tf.summary.merge_all(?)
????summary_writer?=?tf.summary.FileWriter('/tmp/mnist?log/1',?sess.graph)
????summary_writer.add_graph(sess.graph)
????sess.run(tf.global_variables_initializer(?))
????for?i?in?range(20000):
????????batch?=?data.train.next_batch(50)
????????if?i?%?100?==?0:
????????????train_accuracy?=?accuracy.eval(feed_dict={x:?batch[0],?y_:batch[1],?keep_prob:?1.0})
????????????print("step?%d,training?accuracy?%g"?%?(i,train_accuracy))
????????sess.run(train_step,?feed_dict={x:?batch[0],?y_:?batch[1],?keep_prob:?0.5})
???
????print(sess.run(accuracy,?feed_dict={x:?data.test.images,y_?:?data.test.labels,?keep_prob:?1.0})
????path?=?saver.save(
????????sess,?os.path.join(os.path.dirname(__file__),?'data',?'convolutional.ckpt'),
????????write_meta_graph=False,?write_state=False)
????print("saved:",?path?)
????
運(yùn)行出現(xiàn)??下面錯(cuò)誤
C:\ProgramData\Anaconda3\envs\mnist_testdemo\python.exe?C:/Users/dbgen/PycharmProjects/mnist_testdemo/mnist/convolutional.py?
??File?"C:/Users/dbgen/PycharmProjects/mnist_testdemo/mnist/convolutional.py",?line?36????
????path?=?saver.save(???????
^SyntaxError:?invalid?syntaxProcess?finished?with?exit?code?1
2019-07-18