我的卷積運(yùn)行報(bào)錯,麻煩明白的幫我糾正下,謝謝
WARNING:tensorflow:From D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
Traceback (most recent call last):
? File "D:/code/PycharmProject/mnist_testdemo2/mnist/convolutional.py", line 12, in <module>
? ? y, variables = model.convolutional(x, keep_prob)
? File "D:\code\PycharmProject\mnist_testdemo2\mnist\model.py", line 24, in convolutional
? ? W_conv1 = weight_variable([5, 5, 1, 32])
? File "D:\code\PycharmProject\mnist_testdemo2\mnist\model.py", line 17, in weight_variable
? ? initial = tf.truncated.normal(shape, stddev=0.1)
AttributeError: module 'tensorflow' has no attribute 'truncated'
------------------------------------------------------
我的model文件代碼:
import?tensorflow?as?tf #?線性模型?Y=W*x?+?b def?regressions(x): ????W?=?tf.Variable(tf.zeros([784,?10]),?name="W") ????b?=?tf.Variable(tf.zeros([10]),?name='b') ????y?=?tf.nn.softmax(tf.matmul(x,?W)?+?b) ????return?y,?[W,b] #?卷積模型 def?convolutional(x,?keep_prob): ????def?conv2d(x,?W): ????????return?tf.nn.conv2d([1,?1,?1,?1],?padding='SAME') ????def?max_pool_2x2(x): ????????return?tf.nn.max_pool(x,?ksize=[1,?2,?2,?1],?strides=[1,?2,?2,?1]) ????def?weight_variable(shape): ????????initial?=?tf.truncated.normal(shape,?stddev=0.1) ????????return?tf.Variable(initial) ????def?bias_variable(shape): ????????initial?=?tf.constant(0.1,?shape=shape) ????????return?tf.Variable(initial) ????x_image?=?tf.reshape(x,?[-1,?28,?28,?1]) ????W_conv1?=?weight_variable([5,?5,?1,?32]) ????b_conv1?=?bias_variable([32]) ????h_conv1?=?tf.nn.relu(conv2d(x_image,?W_conv1)?+?b_conv1) ????h_pool1?=?max_pool_2x2(h_conv1) ????W_conv2?=?weight_variable([5,?5,?32,?64]) ????b_conv2?=?bias_variable([64]) ????h_conv2?=?tf.nn.relu(conv2d(h_pool1,?W_conv2)?+?b_conv2) ????h_pool2?=?max_pool_2x2(h_conv2) ????#?full?connection ????W_fc1?=?weight_variable([7?*?7?*?64,?1024]) ????b_fc1?=?bias_variable([1024]) ????h_pool2_flat?=?tf.reshape(h_pool2,?[-1,?7?*?7?*?64]) ????h_fc1?=?tf.nn.relu(tf.matmul(h_pool2_flat,?W_fc1)?+?b_fc1) ????h_fc1_drop?=?tf.nn.dropout(h_fc1,?keep_prob) ????W_fc2?=?weight_variable([1024,?10]) ????b_fc2?=?bias_variable([10]) ????y?=?tf.nn.softmax(tf.matmul(h_fc1_drop,?W_fc2)?+?b_fc2) ????return?y,?[W_conv1,?b_conv1,?W_conv2,?b_conv2,?W_fc1,?b_fc1,?W_fc2,?b_fc2]
我的convolutional代碼:
import?os
import?model
import?tensorflow?as?tf
import?input_data
data?=?input_data.read_data_sets('MNIST_data',?one_hot=True)
#model
with?tf.variable_scope("convolutional"):
????x?=?tf.placeholder(tf.float32,?[None,?784],?name='x')
????keep_prob?=?tf.placeholder(tf.float32)
????y,?variables?=?model.convolutional(x,?keep_prob)
#train
y_?=?tf.placeholder(tf.float32,?[None,?10],?name='y')
cross_entropy?=?-tf.reduce_sum(y_?*?tf.log(y))
train_step?=?tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction?=?tf.equal(tf.argmax(y,?1),?tf.argmax(y_,?1))
accuracy?=?tf.reduce_mean(tf.cast(correct_prediction,?tf.float32))
saver?=?tf.train.Saver(variables)
with?tf.Session()?as?sess:
????merged_summary_op?=?tf.summary.merge_all()
????summay_writer?=?tf.summary.FileWriter('./tem/mnist_log/1',?sess.graph)
????summay_writer.add_graph(sess.graph)
????sess.run(tf.lobal_variables_initializer())
????#最好做兩萬次訓(xùn)練
????for?i?in?range(2000):
????????batch?=?data.train.next_batch(50)
????????if(i?%?100?==?0):
????????????train_accuracy?=?accuracy.eval(feed_dict={x:?batch[0],?y_:?batch[1],?keep_prob:?1.0})
????????????print("step?%d,?training?accuracy?%g"?%?(i,?train_accuracy))
????????sess.run(train_step,?feed_dict={x:?batch[0],?y_:?batch[1],?keep_prob:0.5})
????print(sess.run(accuracy,?feed_dict={x:?data.test.images,?y_:?data.test.labels,?keep_prob:?1.0}))
????path?=?saver.save(sess,?os.path.join(os.path.dirname(__file__),?'data',?'convalutional.ckpt',?write_meta_graph=False,?write_state=False))
????print("Saved:",?path)
2019-07-14
這里應(yīng)該是?
2019-05-24
我報(bào)錯也是如此,不知為毛