-
向量的點(diǎn)乘 矩陣的轉(zhuǎn)置查看全部
-
import numpy as np class Perceptron(object): """ eta:學(xué)習(xí)率 n_iter:權(quán)重向量的訓(xùn)練次數(shù) w_:神經(jīng)分叉權(quán)重向量 errors_:用于記錄神經(jīng)元判斷出錯(cuò)次數(shù) """ def __init__(self,eta=0.01,n_iter=10): self.eta=eta; self.n_iter=n_iter pass def fit(self,x,y): """ 輸入訓(xùn)練數(shù)據(jù),培訓(xùn)神經(jīng)元,x輸入樣本向量,y對(duì)應(yīng)樣本分類 x:shapep[n_samples,n_features] x:[[1,2,3],[4,5,6]] n_samples:2 n_features:3 y:[1,-1] """ """ 初始化權(quán)重向量為0 加一是因?yàn)榍懊嫠惴ㄌ岬降膚0,也就是步調(diào)函數(shù)閾值 """ self.w_=np.zero(1+x.shape[1]); self.errors_=[]; pass查看全部
-
課程大綱查看全部
-
一般的神經(jīng)網(wǎng)絡(luò)查看全部
-
課程大綱查看全部
-
一維變二維:np.arrange(x1_min,x1_max,resolution) 二維變一維:np.array([xx1.rave1(), xx2.ravel()]).T查看全部
-
算法步驟查看全部
-
權(quán)重更新算法事例查看全部
-
權(quán)重的更新算法查看全部
-
步調(diào)函數(shù)與閥值查看全部
-
激活函數(shù)查看全部
-
三個(gè)步驟查看全部
-
權(quán)重更新算法查看全部
-
步調(diào)函數(shù)與閾值查看全部
-
和方差求偏導(dǎo)數(shù)(梯度下降算法?)查看全部
舉報(bào)
0/150
提交
取消