第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號安全,請及時綁定郵箱和手機立即綁定

最小二乘法的應用

標簽:
機器學習

最小二乘法:
W = L(\alpha_1, \cdots, \alpha_s)  \mathbb R 上的欧式空间 V 的子空间,\lambda \in W,则对于任意的 \beta \in V,有:
\forall \, \delta \in W,\; ||\beta - \lambda|| \leq ||\beta - \delta|| \Longleftrightarrow \beta \, \bot \, W
即向量到子空间各向量间的距离以垂线为最短。

下面的 Q 表示待求解的问题,A 代表求解方法:

求解线性方程组

  • Q_1

\begin{aligned} &AX = b \\ &\text{其中} A \in {\mathbb R}^{m \times n} ;\; X \in {\mathbb R}^{n \times 1} ;\; b \in {\mathbb R}^{m \times 1} \end{aligned}

  • A_1

 A = (\alpha_1, \cdots, \alpha_n), X = (x_1, \cdots, x_n)^{T},则有 Y = AX = x_1 \alpha_1 + \cdots + x_n \alpha_n,即 Y \in L(\alpha_1, \cdots, \alpha_n),这样 Q_1 便可转化为最小二乘问题:

  • Q_1^1

\begin{aligned} &\displaystyle\min_{Y} ||Y - b|| \Longleftrightarrow b - Y \,\bot \, L(\alpha_1, \cdots, \alpha_n)\\ &(b - Y,\, \alpha_ i) = 0,\;\;\; i \in \{1, \cdots, s\} \Longleftrightarrow A^T(AX - b) = 0 \end{aligned}
这样原问题便简化了。

點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優(yōu)質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續(xù)努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優(yōu)惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網(wǎng)微信公眾號

舉報

0/150
提交
取消