第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號安全,請及時綁定郵箱和手機立即綁定

Python實現(xiàn)漢諾塔遞歸算法

標簽:
Python

汉诺塔算法


汉诺塔


要想利用递归函数解决问题,一定要完成两个基本的要素:递归的终止条件,递推公式。为了分析得到递归函数,下面分三步来考虑这个问题:

  • 说明:A.B.C分别表示三根柱子;1,2,3分别表示三个圆盘,并且数字越大表示圆盘越大。
    现在我们需要将A上的全部圆盘移动到C上

  • ① 只有一个圆盘:1
    <b>A -> C</b>

  • ② 有两个圆盘:1、2
    A -> B
    <b>A -> C</b>
    B -> C

  • ③ 有三个圆盘:1、2、3
    A -> C
    A -> B
    C -> B
    <b>A -> C</b>
    B -> A
    B -> C
    A -> C


  • 观察上面的结果发现:

  1. 每次最重要的一步,就是将A中最大的圆盘移动到C上。
    ①将1:A->C
    ②将2:A->C
    ③将3:A->C

  2. 观察③:加粗A->C以上部分和以下的部分,我们可以发现其实过程和②完全相似。对于上面的部分:是将1.2两个圆盘从起点A移动到终点B;对于下面的部分:是将1.2两个圆盘从起点B移动到终点C(对于②:是将1.2两个圆盘从A移动到C)。
    因此③中的过程,完全可以重复②的过程实现。这也就是递归的一个思想。
    这里我们如果定义一个函数,可以这样表示这个过程:

#上面部分:n-1个圆盘从A->Bmov (n-1,A,C,B)#中间部分?#下面部分:n-1个圆盘从B->Cmov (n-1,B,A,C)

这里就是一个递推公式的表现。

  1. 最后,递归的终止条件:肯定就是回到①中,将每次的最后一个圆盘从A->C。也就是上述代码中的中间部分

#中间部分mov (1,A,B,C)

算法实现


#-*- coding:utf-8 -*-def mov(n,a,b,c):
    if n== 1:
        print(a,'->',c)    else:
        mov(n-1,a,c,b)
        mov(1,a,b,c)
        mov(n-1,b,a,c)

num = input("请输入要移动的圆盘个数:")
mov(int(num),'A','B','C')

程序截图

参考资料


汉诺塔递归算法与解析



作者:LeeLom
链接:https://www.jianshu.com/p/b04087dc6fdf


點擊查看更多內(nèi)容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優(yōu)質(zhì)文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續(xù)努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優(yōu)惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網(wǎng)微信公眾號

舉報

0/150
提交
取消