第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號(hào)安全,請(qǐng)及時(shí)綁定郵箱和手機(jī)立即綁定

torch clamp

標(biāo)簽:
雜七雜八

标题:Torch Clamp 实现过程中的技巧与实践

作为一款深度学习工具,PyTorch Clamp 在许多场景中都能发挥关键作用。它可以帮助我们快速地构建定制化的模型结构,提高模型的性能。在实现过程中,有许多技巧需要我们掌握。本文将介绍一些在 torch clamp 的实践中需要注意的细节,帮助大家更好地使用这一工具。

Clamp 的安装与使用

  1. Clamp 的安装

如果你还没有安装 Clamp,可以参考官方文档进行安装:https://github.com/facebookresearch/torchclamp

  1. Clamp 的使用

首先,你需要使用以下命令安装 Clamp:

pip install torchclamp

接下来,在你的 PyTorch 代码中导入 Clamp:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchclamp

然后,你可以使用 Clamp 来定义网络结构:

class MyNet(nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.relu1 = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
        self.relu2 = nn.ReLU(inplace=True)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.relu3 = nn.ReLU(inplace=True)
        self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        self.relu4 = nn.ReLU(inplace=True)
        self.conv5 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
        self.relu5 = nn.ReLU(inplace=True)
        self.conv6 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.relu6 = nn.ReLU(inplace=True)
        self.conv7 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
        self.relu7 = nn.ReLU(inplace=True)
        self.conv8 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu8 = nn.ReLU(inplace=True)
        self.conv9 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu9 = nn.ReLU(inplace=True)
        self.conv10 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu10 = nn.ReLU(inplace=True)
        self.conv11 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu11 = nn.ReLU(inplace=True)
        self.conv12 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu12 = nn.ReLU(inplace=True)
        self.conv13 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu13 = nn.ReLU(inplace=True)
        self.conv14 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu14 = nn.ReLU(inplace=True)
        self.conv15 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu15 = nn.ReLU(inplace=True)
        self.conv16 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu16 = nn.ReLU(inplace=True)
        self.conv17 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu17 = nn.ReLU(inplace=True)
        self.conv18 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu18 = nn.ReLU(inplace=True)
        self.conv19 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu19 = nn.ReLU(inplace=True)
        self.conv20 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.relu20 = nn.ReLU(inplace=True)

        self.shortcut1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=1, padding=0),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
        )

        self.shortcut2 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=1, padding=0),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
        )

        self.shortcut3 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=1, padding=0),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
        )

        self.shortcut4 = nn.Sequential(
            nn.Conv2d(128, 128, kernel_size=1, padding=0),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
        )

        self.shortcut5 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=1, padding=0),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
        )

        self.shortcut6 = nn.Sequential(
            nn.Conv2d(256, 256, kernel_size=1, padding=0),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
        )

        self.shortcut7 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=1, padding=0),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
        )

        self.shortcut8 = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=1, padding=0),
            nn.B
點(diǎn)擊查看更多內(nèi)容
TA 點(diǎn)贊

若覺(jué)得本文不錯(cuò),就分享一下吧!

評(píng)論

作者其他優(yōu)質(zhì)文章

正在加載中
  • 推薦
  • 評(píng)論
  • 收藏
  • 共同學(xué)習(xí),寫(xiě)下你的評(píng)論
感謝您的支持,我會(huì)繼續(xù)努力的~
掃碼打賞,你說(shuō)多少就多少
贊賞金額會(huì)直接到老師賬戶(hù)
支付方式
打開(kāi)微信掃一掃,即可進(jìn)行掃碼打賞哦
今天注冊(cè)有機(jī)會(huì)得

100積分直接送

付費(fèi)專(zhuān)欄免費(fèi)學(xué)

大額優(yōu)惠券免費(fèi)領(lǐng)

立即參與 放棄機(jī)會(huì)
微信客服

購(gòu)課補(bǔ)貼
聯(lián)系客服咨詢(xún)優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動(dòng)學(xué)習(xí)伙伴

公眾號(hào)

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號(hào)

舉報(bào)

0/150
提交
取消