第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號安全,請及時綁定郵箱和手機(jī)立即綁定

深度學(xué)習(xí)圖像標(biāo)注工具匯總

標(biāo)簽:
深度學(xué)習(xí)

对于监督学习算法而言,数据决定了任务的上限,而算法只是在不断逼近这个上限。世界上最遥远的距离就是我们用同一个模型,但是却有不同的任务。但是数据标注是个耗时耗力的工作,下面介绍几个图像标注工具:

Labelme

Labelme适用于图像分割任务的数据集制作: 

这里写图片描述

它来自下面的项目:https://github.com/wkentaro/labelme

该软件实现了最基本的分割数据标注工作,在save后将保持Object的一些信息到一个json文件中,如下:

https://github.com/wkentaro/labelme/blob/master/static/apc2016_obj3.json


同时该软件提供了将json文件转化为labelimage的功能: 
这里写图片描述

labelImg

Labelme适用于图像检测任务的数据集制作: 
这里写图片描述

它来自下面的项目:https://github.com/tzutalin/labelImg


其中标签存储功能和“Next Image”、“Prev Image”的设计使用起来比较方便。 
该软件最后保存的xml文件格式和ImageNet数据集是一样的。

yolo_mark

yolo_mark适用于图像检测任务的数据集制作: 
这里写图片描述

它来自于下面的项目:https://github.com/AlexeyAB/Yolo_mark


它是yolo2的团队开源的一个图像标注工具,为了方便其他人使用yolo2训练自己的任务模型。在linux和win下都可运行,依赖opencv库。

Vatic

Vatic适用于图像检测任务的数据集制作: 
这里写图片描述 

它来自下面的项目:http://carlvondrick.com/vatic/


比较特别的是,它可以做视频的标注,比如一个25fps的视频,只需要隔100帧左右手动标注一下物体的位置,最后在整个视频中就能有比较好的效果。这依赖于软件集成的opencv的追踪算法。

Sloth

Sloth适用于图像检测任务的数据集制作: 
这里写图片描述 
它来自下面的项目: 

https://github.com/cvhciKIT/sloth

https://cvhci.anthropomatik.kit.edu/~baeuml/projects/a-universal-labeling-tool-for-computer-vision-sloth/


在标注label的时候,该软件可以存储标签,并呈现标注过的图片中的bbox列表。

Annotorious

Annotorious适用于图像检测任务的数据集制作:

这里写图片描述

它来自下面的项目: 

http://annotorious.github.io/index.html


代码写的相当规范,提供了相应的API接口,方便直接修改和调用。

RectLabel

RectLabel适用于图像检测任务的数据集制作:

这里写图片描述

它来自下面的项目: 

https://rectlabel.com/


这是一个适用于Mac OS X的软件,而且可以在apple app store中直接下载。

VoTT

VoTT适用于图像检测任务的数据集制作: 
这里写图片描述

它来自下面的项目: 

https://github.com/Microsoft/VoTT/


微软的开源工具,既可以标注视频,也可以标注图片,而且支持已有模型的集成,功能强大。

IAT – Image Annotation Tool

IAT适用于图像分割任务的数据集制作: 
这里写图片描述
它来自下面的项目: 

http://www.ivl.disco.unimib.it/activities/imgann/


比较有特色的是,它支持一些基础形状的选择,比如要分割的物体是个圆形的,那么分割时可以直接选择圆形,而不是用多边形选点。

images_annotation_programme

images_annotation_programme适用于图像检测任务的数据集制作: 
这里写图片描述
它来自下面的项目: 

https://github.com/frederictost/images_annotation_programme


网页版的哦

除此之外,还有很多类似的工具,与上面的工具相比,并没有什么特色了,我们只给出链接,不详细介绍了:

ImageNet-Utils

https://github.com/tzutalin/ImageNet_Utils


labeld


https://github.com/sweppner/labeld


VIA


http://www.robots.ox.ac.uk/~vgg/software/via/


ALT

https://alpslabel.wordpress.com/2017/01/26/alt/


FastAnnotationTool

https://github.com/christopher5106/FastAnnotationTool


LERA


https://lear.inrialpes.fr/people/klaeser/software_image_annotation


原文出处

點(diǎn)擊查看更多內(nèi)容
TA 點(diǎn)贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優(yōu)質(zhì)文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學(xué)習(xí),寫下你的評論
感謝您的支持,我會繼續(xù)努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進(jìn)行掃碼打賞哦
今天注冊有機(jī)會得

100積分直接送

付費(fèi)專欄免費(fèi)學(xué)

大額優(yōu)惠券免費(fèi)領(lǐng)

立即參與 放棄機(jī)會
微信客服

購課補(bǔ)貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動學(xué)習(xí)伙伴

公眾號

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號

舉報

0/150
提交
取消