第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號(hào)安全,請(qǐng)及時(shí)綁定郵箱和手機(jī)立即綁定

請(qǐng)教個(gè)問題,我想把數(shù)據(jù)中名字的重復(fù)值刪掉,只保留年紀(jì)大的怎么整呢?

大家好,我是皮皮。

一、前言

国庆期间在Python白银交流群【谢峰】问了一个Pandas处理的问题,提问截图如下:

代码如下:

import pandas as pd
data = [{'name': '小明', 'age': 18}, {'name': '小张', 'age': 20}, {'name': '小明', 'age': 20}, {'name': '小明', 'age': 38}]
data = pd.DataFrame(data)
# print(data)
# 删除名字重复的,只保留年龄最大的那个
data = data.drop_duplicates('name', inplace=False)
print(data)

二、实现过程

这里【甯同学】给了一个思路,先排个序,再删,并且给出了如下代码:

import pandas as pd
data = [{'name': '小明', 'age': 18}, {'name': '小张', 'age': 20}, {'name': '小明', 'age': 20}, {'name': '小明', 'age': 38}]
data = pd.DataFrame(data)
# print(data)
# 删除名字重复的,只保留年龄最大的那个
data = data.sort_values(by="age", ascending=False).drop_duplicates('name', inplace=False)
# data = data.drop_duplicates('name', inplace=False)
print(data)

顺利地解决了粉丝的问题。下面是他自己整理出来的,也一起分享给大家了。和上面的代码没太大区别,只是省去了参数名,硬要说就是默认参数省了和没省的区别。

import pandas as pd
data = [{'name': '小明', 'age': 18}, {'name': '小张', 'age': 20}, {'name': '小明', 'age': 20}, {'name': '小明', 'age': 38}]
data = pd.DataFrame(data)
# print(data)
# 删除名字重复的,只保留年龄最大的那个
data = data.sort_values('age', ascending=False).drop_duplicates(subset=['name'], keep='first')
print(data)
data = data.sort_values(by='age', ascending=False).drop_duplicates('name', inplace=False)
print(data)

后来粉丝自己还拓展了下,这里拿出来跟大家一起分享。

一、sort_values()函数用途

pandas中的sort_values()函数原理类似于SQL中的order by,可以将数据集依照某个字段中的数据进行排序,该函数即可根据指定列数据也可根据指定行的数据排序。

二、sort_values()函数的具体参数

  • 用法:DataFrame.sort_values(by=‘##’,axis=0,ascending=True, inplace=False, na_position=‘last’)
  • 参数说明
参数 说明
by 指定列名(axis=0或’index’)或索引值(axis=1或’columns’)
axis 若axis=0或’index’,则按照指定列中数据大小排序;若axis=1或’columns’,则按照指定索引中数据大小排序,默认axis=0
ascending 是否按指定列的数组升序排列,默认为True,即升序排列
inplace 是否用排序后的数据集替换原来的数据,默认为False,即不替换
na_position {‘first’,‘last’},设定缺失值的显示位置

三、例子

单条件根据排序删除重复值

import pandas as pd
data = [{'name': '小明', 'age': 18, 'high': 155}, {'name': '小张', 'age': 20, 'high': 145}, {'name': '小明', 'age': 38, 'high': 175}, {'name': '小明', 'age': 38, 'high': 195}]
data = pd.DataFrame(data)

# 单条件删除(名字重复的,只保留年龄最大的那个)
a = data.sort_values('age', ascending=False).drop_duplicates('name')
print(a)

多条件根据排序删除重复值

mport pandas as pd
data = [{'name': '小明', 'age': 18, 'high': 155}, {'name': '小张', 'age': 20, 'high': 145}, {'name': '小明', 'age': 38, 'high': 175}, {'name': '小明', 'age': 38, 'high': 195}]
data = pd.DataFrame(data)

# 多条件删除(名字一样,根据年龄删除,保留最大的,年龄一样,再根据身高删除,保留最大的)
b = data.sort_values(['age', 'high'], ascending=False).drop_duplicates('name')
print(b)

可以说学完这里,sort_values()的用法算是基本上吃透了。

三、总结

大家好,我是皮皮。这篇文章主要盘点了一个Pandas处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

最后感谢粉丝【谢峰】提问,感谢【甯同学】、【论草莓如何成为冻干莓】给出的思路和代码解析,感谢【dcpeng】、【此类生物】、【凡人不烦人】等人参与学习交流。

點(diǎn)擊查看更多內(nèi)容
TA 點(diǎn)贊

若覺得本文不錯(cuò),就分享一下吧!

評(píng)論

作者其他優(yōu)質(zhì)文章

正在加載中
  • 推薦
  • 評(píng)論
  • 收藏
  • 共同學(xué)習(xí),寫下你的評(píng)論
感謝您的支持,我會(huì)繼續(xù)努力的~
掃碼打賞,你說多少就多少
贊賞金額會(huì)直接到老師賬戶
支付方式
打開微信掃一掃,即可進(jìn)行掃碼打賞哦
今天注冊(cè)有機(jī)會(huì)得

100積分直接送

付費(fèi)專欄免費(fèi)學(xué)

大額優(yōu)惠券免費(fèi)領(lǐng)

立即參與 放棄機(jī)會(huì)
微信客服

購(gòu)課補(bǔ)貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動(dòng)學(xué)習(xí)伙伴

公眾號(hào)

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號(hào)

舉報(bào)

0/150
提交
取消