第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號安全,請及時綁定郵箱和手機立即綁定

Proc Lifetest1 - KM 存活曲線

SAS day 25: Proc Lifetest 1

What are the foundations for FDA or NDA to approve a new medication besides its safety concerns?  
Many of us would think about the efficacy of the drug. If we dig in the question a bit further, how do we evaluate the efficacy then?

Survival Analysis is one of the coolest/ most critical methods in Clinical Trials, it is the golden test for medication efficacy: how long will patients survive.

Proc Lifetest is the most widely used model to evaluate the result of survival analysis; it computes and displays the product-limit estimate of the survivor function.

today we will go over the basic Syntax to generate a KM Plot and read the tables.

image

Key Words:

Patient at Risk:Number of patients still survive at a specified time point

Fail: Number of patients died

Censor/ Event (cnsr):
Censor=1 (Event=0): the patients still survive up to this time point
Event=1(Censor=0) : the patient died   
*note: the censoring rule could be extremely perplexing, I just used the simplest example to show the basic concept

Survival time(aval): Most of clinical trial studies use month as a unit, year or days are also legit.

Kaplan Meier used to estimate the survival function from Time to Event Data

LogRank Test: test the null hypothesis that there is no difference between the populations in the probability of an event (here a death) at any time point.
*the most popular statistical test in LifeTest

Data Preparation : ADSL, ADTTE

data adsl;
set adam.adsl;
i=_n_;
keep subjid i; 
run;

data adtte;
do i =1 to 100;
aval= rand("Uniform",0, 60);
cnsr= rand("BERNOULLI", 0.88);
if mod(i,2) =0 then paramcd="PFS";
if mod(i,2)^=0 then paramcd="DOR";
if mod(i,2) =0 then trtan="Placebo";
if mod(i,2)^=0 then trtan="Exlir";
output;
end;
run;

data lifetest;
merge adsl(in=a) adtte(in=b);
if a;
by i;
run;

*note: I used Rand function created a dummy dataset.

**Sample Data **

image

Proc Lifetest:

ods trace on;
ods output productlimitestimates=surv(keep=nhl timelist Survival left);
proc lifetest data=lifetest plots=survival(atrisk=0 to 60 by 3) method=km 
              timelist=0 to 60 by 3 ;  
  strata trtan/test=(logrank); 
  time aval*cnsr(1);
run;

Sample Output

image

Validation Dataset:

As we can see the “Left” column is patient at risk and Trtan” is the strata on the graph
and Timelist is the survival time(aval) point (3 months, 6months), Survival is the probability of overall patient survival until the specified time point.

**image

image

Summary:

As the Kaplan-Meier graph demonstrated,  the two treatment group does not show a significant difference, which makes sense, because I used a uniform random number generator. I hope all the drugs can demonstrate such an amazing survival effect! Proc Lifetest is an import application for survival analysis, next time, we will go over the Adjust option, 95% CI, and how to calculate LogRank Test value.

Happy Studying! 💃

Reference:

點擊查看更多內(nèi)容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優(yōu)質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續(xù)努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優(yōu)惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網(wǎng)微信公眾號

舉報

0/150
提交
取消