第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號安全,請及時綁定郵箱和手機立即綁定

線性回歸基礎(chǔ)代碼

# Use linear model to model this data.
from sklearn.linear_model import LinearRegression
import numpy as np

lr=LinearRegression()
lr.fit(pga.distance[:,np.newaxis],pga['accuracy'])  # Another way is using pga[['distance']]
theta0=lr.intercept_
theta1=lr.coef_
print(theta0)
print(theta1)


#calculating cost-function for each theta1
#计算平均累积误差
def cost(x,y,theta0,theta1):
    J=0
    for i in range(len(x)):
        mse=(x[i]*theta1+theta0-y[i])**2
        J+=mse
    return J/(2*len(x))

theta0=100
theta1s = np.linspace(-3,2,197)
costs=[]
for theta1 in theta1s:
    costs.append(cost(pga['distance'],pga['accuracy'],theta0,theta1))
plt.plot(theta1s,costs)
plt.show()
print(pga.distance)


#调整theta
def partial_cost_theta0(x,y,theta0,theta1):
    #我们的模型是线性拟合函数时:y=theta1*x + theta0,而不是sigmoid函数,当非线性时我们可以用sigmoid
    #直接多整个x series操作,省的一个一个计算,最终求sum 再平均
    h=theta1*x+theta0  
    diff=(h-y)
    partial=diff.sum()/len(diff)
    return partial
partial0=partial_cost_theta0(pga.distance,pga.accuracy,1,1)

def partial_cost_theta1(x,y,theta0,theta1):
    #我们的模型是线性拟合函数:y=theta1*x + theta0,而不是sigmoid函数,当非线性时我们可以用sigmoid
    h=theta1*x+theta0
    diff=(h-y)*x
    partial=diff.sum()/len(diff)
    return partial
partial1=partial_cost_theta1(pga.distance,pga.accuracy,0,5)
print(partial0)
print(partial1)


def gradient_descent(x,y,alpha=0.1,theta0=0,theta1=0):  #设置默认参数
    #计算成本
    #调整权值
    #计算错误代价,判断是否收敛或者达到最大迭代次数
    most_iterations=1000
    convergence_thres=0.000001 
   
    c=cost(x,y,theta0,theta1)
    costs=[c]
    cost_pre=c+convergence_thres+1.0
    
    counter=0
    while( (np.abs(c-cost_pre)>convergence_thres) & (counter<most_iterations) ):
        update0=alpha*partial_cost_theta0(x,y,theta0,theta1)
        update1=alpha*partial_cost_theta1(x,y,theta0,theta1)
        
        theta0-=update0
        theta1-=update1

        cost_pre=c
        c=cost(x,y,theta0,theta1)
        costs.append(c)
        counter+=1
    return  {'theta0': theta0, 'theta1': theta1, "costs": costs}

print("Theta1 =", gradient_descent(pga.distance, pga.accuracy)['theta1'])
costs=gradient_descent(pga.distance,pga.accuracy,alpha=.01)['cost']
print(gradient_descent(pga.distance, pga.accuracy,alpha=.01)['theta1'])
plt.scatter(range(len(costs)),costs)
plt.show()

数据集 :
复制下面数据,保存为: pga.csv

distance,accuracy
290.3,59.5
302.1,54.7
287.1,62.4
282.7,65.4
299.1,52.8
300.2,51.1
300.9,58.3
279.5,73.9
287.8,67.6
284.7,67.2
296.7,60
283.3,59.4
284,72.2
292,62.1
282.6,66.5
287.9,60.9
279.2,67.3
291.7,64.8
289.9,58.1
289.8,61.7
298.8,56.4
280.8,60.5
294.9,57.5
287.5,61.8
282.7,56
277.7,72.5
270.5,71.7
285.2,66
315.1,55.2
281.9,67.6
293.3,58.2
286,59.9
285.6,58.2
289.9,65.7
277.5,59
293.6,56.8
301.1,65.4
300.8,63.4
287.4,67.3
281.8,72.6
277.4,63.1
279.1,66.5
287.4,66.4
280.9,62.3
287.8,57.2
261.4,69.2
272.6,69.4
291.3,65.3
294.2,52.8
285.5,49
287.9,61.1
282.2,65.6
301.3,58.2
276.2,61.7
281.6,68.1
275.5,61.2
309.7,53.1
287.7,56.4
291.6,56.9
284.1,65
299.6,57.5
282.7,60
271.5,72
292.1,58.2
295,59.4
274.9,69
273.6,68.7
299.9,60.1
279.9,74
289.9,66
283.6,59.8
310.3,52.4
291.7,65.6
284.2,63.2
295,53.5
298.6,55.1
297.4,60.4
299.7,67.7
284.4,69.7
286.4,72.4
285.9,66.9
297.6,54.3
272.5,62
277,66.2
287.6,60.9
280.4,69.4
280,63.7
295.4,52.8
274.4,68.8
286.5,73.1
287.7,65.2
291.5,65.9
279,69.4
299,65.2
290.1,69.1
288.9,67.9
288.8,68.2
283.2,61
293.2,58.4
285.3,67.3
284.1,65.7
281.4,67.7
286.1,61.4
284.9,62.3
284.8,68.1
296,62
282.9,71.8
280.9,67.8
291.2,62
292.8,62.2
291,61.9
285.7,62.4
283.9,62.9
298.4,61.5
285.1,65.3
286.1,60.1
283.1,65.4
289.4,58.3
284.6,70.7
296.6,62.3
295.9,64.9
295.2,62.8
293.9,54.5
275,65.5
286.8,69.5
291.1,64.4
284.8,62.5
283.7,59.5
295.4,66.9
291.8,62.7
274.9,72.3
302.9,61.2
272.1,80.4
274.9,74.9
296.3,59.4
286.2,58.8
294.2,63.3
284.1,66.5
299.2,62.4
275.4,71
273.2,70.9
281.6,65.9
295.7,55.3
287.1,56.8
287.7,66.9
296.7,53.7
282.2,64.2
291.7,65.6
281.6,73.4
311,56.2
278.6,64.7
288,65.7
276.7,72.1
292,62
286.4,69.9
292.7,65.7
294.2,62.9
278.6,59.6
283.1,69.2
284.1,66
278.6,73.6
291.1,60.4
294.6,59.4
274.3,70.5
274,57.1
283.8,62.7
272.7,66.9
303.2,58.3
282,70.4
281.9,61
287,59.9
293.5,63.8
283.6,56.3
296.9,55.3
290.9,58.2
303,58.1
292.8,61.1
281.1,65
293,61.1
284,66.5
279.8,66.7
292.9,65.4
284,66.9
282,64.5
280.6,64
287.7,63.4
287.7,63.4
298.3,59.5
299.6,53.4
291.3,62.5
295.2,61.4
288,62.4
297.8,59.5
286,62.6
285.3,66.2
286.9,63.4
275.1,73.7
點擊查看更多內(nèi)容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優(yōu)質(zhì)文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學(xué)習(xí),寫下你的評論
感謝您的支持,我會繼續(xù)努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學(xué)

大額優(yōu)惠券免費領(lǐng)

立即參與 放棄機會
微信客服

購課補貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動學(xué)習(xí)伙伴

公眾號

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號

舉報

0/150
提交
取消