第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號(hào)安全,請(qǐng)及時(shí)綁定郵箱和手機(jī)立即綁定

Spark MLlib機(jī)器學(xué)習(xí)開(kāi)發(fā)指南(5)--特征提取--Word2Vec

標(biāo)簽:
大數(shù)據(jù)

Spark MLlib机器学习开发指南(5)--特征提取,转换,选择--Word2Vec

翻译自Word2Vec,基于最新2.2.0版本翻译,转载注明出处 xcrossed 机器学习

Word2Vec

在spark ml中,Word2Vec是一个估计器(前面说过估计器和转换器的概念了,可以往回看具体概念),由表示文档的单词序列训练而成的一个Word2VecModel。模型映射每个单词为一个唯一固定大小的向量。Word2VecModel使用文档中所有单词的平均值将每个文档转换成一个向量,这个向量可以作为预测的特征,文档相似性计算等等。请参阅Word2VecMLlib的用户指南,以了解更多细节。

示例
在下面的代码片断,我们一个文档集合开始,每个文档由一序列的单词表示。每个文档我们将转换成一个特征向量,这个特征向量可以被传递给一个学习算法。

详细API请参考Word2Vec Scala docs

import org.apache.spark.ml.feature.Word2Vecimport org.apache.spark.ml.linalg.Vectorimport org.apache.spark.sql.Row// Input data: Each row is a bag of words from a sentence or document.val documentDF = spark.createDataFrame(Seq(  "Hi I heard about Spark".split(" "),  "I wish Java could use case classes".split(" "),  "Logistic regression models are neat".split(" ")
).map(Tuple1.apply)).toDF("text")// Learn a mapping from words to Vectors.val word2Vec = new Word2Vec()
  .setInputCol("text")
  .setOutputCol("result")
  .setVectorSize(3)
  .setMinCount(0)val model = word2Vec.fit(documentDF)val result = model.transform(documentDF)
result.collect().foreach { case Row(text: Seq[_], features: Vector) =>
  println(s"Text: [${text.mkString(", ")}] => \nVector: $features\n") }



作者:xcrossed
链接:https://www.jianshu.com/p/f92967ad49a8


點(diǎn)擊查看更多內(nèi)容
TA 點(diǎn)贊

若覺(jué)得本文不錯(cuò),就分享一下吧!

評(píng)論

作者其他優(yōu)質(zhì)文章

正在加載中
  • 推薦
  • 評(píng)論
  • 收藏
  • 共同學(xué)習(xí),寫(xiě)下你的評(píng)論
感謝您的支持,我會(huì)繼續(xù)努力的~
掃碼打賞,你說(shuō)多少就多少
贊賞金額會(huì)直接到老師賬戶
支付方式
打開(kāi)微信掃一掃,即可進(jìn)行掃碼打賞哦
今天注冊(cè)有機(jī)會(huì)得

100積分直接送

付費(fèi)專欄免費(fèi)學(xué)

大額優(yōu)惠券免費(fèi)領(lǐng)

立即參與 放棄機(jī)會(huì)
微信客服

購(gòu)課補(bǔ)貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動(dòng)學(xué)習(xí)伙伴

公眾號(hào)

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號(hào)

舉報(bào)

0/150
提交
取消