第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號(hào)安全,請(qǐng)及時(shí)綁定郵箱和手機(jī)立即綁定

大數(shù)據(jù)Big Data與深度學(xué)習(xí)Deep Learning的區(qū)別

简单来说:

1)深度学习(Deep Learning)只是机器学习(Machine Learning)的一种类别,一个子领域。机器学习 > 深度学习

2)大数据(Big Data)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的描述。

具体来说:

1)机器学习(Machine Learning)是一个大的方向,里面包括了很多种approach。

任务也可以不同,可以是预测(prediction),分类(classification),聚类(clustering),识别(recognition),重建(reconstruction),约束(regularization),甚至降噪(denoising),超分辨(super-resolution),除马赛克(Demosaicing)等等....

2)深度学习(Deep Learning)是机器学习的一个子类,一般特指学习高层数的网络结构。这个结构中通常会结合线性和非线性的关系。

3)大数据(Big Data,我们也叫他逼格数据....)是对数据和问题的描述。通常被广泛接受的定义是3个V上的“大”:Volume(数据量), Velocity(数据速度)还有variety(数据类别)。大数据问题(Big-data problem)可以指那种在这三个V上因为大而带来的挑战。

Volume很好理解。一般也可以认为是Large-scale data。“大”可以是数据的维度,也可以是数据的size。一般claim自己是big-data的算法会比较scalable,复杂度上对这两个不敏感。

Velocity就是数据到达的速度。对于数据高速到达的情况,需要对应的算法或者系统要有效的处理。

Variaty指的是数据的类别。以往的算法或者系统往往针对某一种已知特定类别的数据来适应。而一般大数据也会指针对处理那些unstructured data或者multi-modal data,这就对传统的处理方法带来了挑战。

點(diǎn)擊查看更多內(nèi)容
TA 點(diǎn)贊

若覺得本文不錯(cuò),就分享一下吧!

評(píng)論

作者其他優(yōu)質(zhì)文章

正在加載中
  • 推薦
  • 評(píng)論
  • 收藏
  • 共同學(xué)習(xí),寫下你的評(píng)論
感謝您的支持,我會(huì)繼續(xù)努力的~
掃碼打賞,你說多少就多少
贊賞金額會(huì)直接到老師賬戶
支付方式
打開微信掃一掃,即可進(jìn)行掃碼打賞哦
今天注冊(cè)有機(jī)會(huì)得

100積分直接送

付費(fèi)專欄免費(fèi)學(xué)

大額優(yōu)惠券免費(fèi)領(lǐng)

立即參與 放棄機(jī)會(huì)
微信客服

購(gòu)課補(bǔ)貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動(dòng)學(xué)習(xí)伙伴

公眾號(hào)

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號(hào)

舉報(bào)

0/150
提交
取消