第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號(hào)安全,請(qǐng)及時(shí)綁定郵箱和手機(jī)立即綁定

Sequential Backward Selection

Sequential Backward Selection

Backward Selection is the selection method starting from the whole set and achieves the attribute set by*** removing the element that results in the maximum decrease of the Objective Function*** in each step.

Sequential Backward Selection Algorithm

  1. Let Y= X.
  2. x in Y where F(x) is maximized.
  3. Y- {xi}, and repeat step 2.

If we run a complete SBS Algorithm, we will have Y=ø, in order to avoid this scenario, we will impose a stopping criterion in practice.

Example:

Apply feature selection on the objective function without a stopping criterion.
F(x1,x2,x3,x4)=3x1x2x3+4x4F(x1,x2,x3,x4)=3*x1*x2-x3+4*x4

[caption id=“attachment_734” align=“alignnone” width=“750”]image

Nerivill / Pixabay[/caption]

Solution:

F(x1,x2,x3,x4)=3x1x2x3+4x4F(x1,x2,x3,x4)=3*x1*x2-x3+4*x4

  1. Check the Objective function value for x1, x2, x3 and x4.

If x1=0, we have F(0,1,1,1)=3
If x2=0, we have F(1,0,1,1)=3
If x3=0, we have F(1,1,0,1)=7
If x4=0, we have F(1,1,1,0)=2

Since x3 produce the maximum decrease value for the objective function, we will remove x3.

2. Check the Objective function value for Y-{x3}
If x1=0, we have F(0,1,0,1)=4
If x2=0, we have F(1,0,0,1)=4
If x4=0, we have F(1,1,0,0)=3

Since x1 and x2 produce the same value, we can pick either x1 or x2. I will pick x1 for simplicity.

3. Check the Objective function value for Y-{x3,x1}
If x2=0, we have F(0,0,0,1)=4
If x4=0, we have F(0,1,0,0)=0
Since x2=0 produce the highest value for the objective function, 4, we will remove x2 in step 3.

4. Check the Objective function value for {x4,x1,x2}∪{x3}
If x4=0, we have F(0,0,0,0)= 0
By finishing this step, we removed the whole set.

Summary:

Sequential Forward Selection is a smart choice to use when the desired cardinality of Y is small. Backward Selection is preferred if the desired cardinality is large.

Both SFS and SBS cannot compare the previous result and the current stage. We need more complicated approaches to resolve this limitation.

Thanks to Douglas Rumbaugh‘s Data Mining Class notes!

Happy studying! 😳

點(diǎn)擊查看更多內(nèi)容
TA 點(diǎn)贊

若覺(jué)得本文不錯(cuò),就分享一下吧!

評(píng)論

作者其他優(yōu)質(zhì)文章

正在加載中
  • 推薦
  • 評(píng)論
  • 收藏
  • 共同學(xué)習(xí),寫(xiě)下你的評(píng)論
感謝您的支持,我會(huì)繼續(xù)努力的~
掃碼打賞,你說(shuō)多少就多少
贊賞金額會(huì)直接到老師賬戶
支付方式
打開(kāi)微信掃一掃,即可進(jìn)行掃碼打賞哦
今天注冊(cè)有機(jī)會(huì)得

100積分直接送

付費(fèi)專(zhuān)欄免費(fèi)學(xué)

大額優(yōu)惠券免費(fèi)領(lǐng)

立即參與 放棄機(jī)會(huì)
微信客服

購(gòu)課補(bǔ)貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動(dòng)學(xué)習(xí)伙伴

公眾號(hào)

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號(hào)

舉報(bào)

0/150
提交
取消