第七色在线视频,2021少妇久久久久久久久久,亚洲欧洲精品成人久久av18,亚洲国产精品特色大片观看完整版,孙宇晨将参加特朗普的晚宴

為了賬號(hào)安全,請(qǐng)及時(shí)綁定郵箱和手機(jī)立即綁定

Normalization

Data transformation is one of the critical steps in Data Mining. Among many data transformation methods, normalization is a most frequently used technique. For example, we can use Z-score normalization to reduce possible noise in sound frequency.

We will introduce three common normalization method, Max-Min Normalization, Z-Score Normalization, Scale multiplication.

Max-Min Normalization
xnormal=(xmin(x))(max(x)min(x))x_{normal}= \frac{(x- min(x))}{(max(x)- min(x))}
it will scale all the data between 0 and 1.
Example:
Chinese high schools use 150 point scale, USA high schools use 100 point scale and Russian high schools use 5 point scale.

`

Z-Score Normalization

Xznormal=(Xmean)sdX_{z-normal}= \frac{(X- mean)}{sd}
It will transform the data in units relative to the standard deviation.
Example:
It is useful when comparing data sets with different units (cm and inch).

Scale multiplication

$ Z_{z-normal} =X*10 or Z_{z-normal} =X/10$
It will transform the data in scales of muliple of 10.
Example:
Some money transactions are too large, we will divide 1000 to make it viewer friendly.

Code

import random
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import colors
from matplotlib.ticker import PercentFormatter
from matplotlib import pylab


y=random.sample(range(0,150),50)
x=list(map(int,y))
x1=np.array(x)
xmin=min(x)
xmax=max(x)

#Max-Min normalization
mmnorm=(x1 - xmin)/(xmax-xmin)
#plot

fig,axs=plt.subplots(1,2,sharey=True)

#Original random number
axs[0].hist(x, bins=10)
axs[0].title.set_text("Random Data")


#Max-Min normalizaed histogram Plot
axs[1].hist(mmnorm, bins=10,color="lightblue")
plt.title("Max-Min Normalized Data")
plt.show()

#Z-score Normalization

y2=random.sample(range(0,150),50)
x2=list(map(int,y3))
x21=np.array(x2)
mean=np.mean(x21)
sd=np.std(x21)


#scale normalization
znorm=(x21-mean)/sd

#plot

fig,axs=plt.subplots(1,2,sharey=True)

#Original random number
axs[0].hist(x2, bins=10, color="green")
axs[0].title.set_text("Random Data")


#scale normalizaed histogram Plot
axs[1].hist(znorm, bins=10,color="lightgreen")
plt.title("Z-score Normalized Data")
plt.show()

#scale

y3=random.sample(range(1000,10000),50)
x3=list(map(int,y3))
x31=np.array(x3)

#scale normalization
snorm=x31/1000

#plot

fig,axs=plt.subplots(1,2,sharey=True)

#Original random number
axs[0].hist(x3, bins=10, color="orange")
axs[0].title.set_text("Random Data")


#scale normalizaed histogram Plot
axs[1].hist(snorm, bins=10,color="yellow")
plt.title("Scale Normalized Data")
plt.show()
點(diǎn)擊查看更多內(nèi)容
TA 點(diǎn)贊

若覺得本文不錯(cuò),就分享一下吧!

評(píng)論

作者其他優(yōu)質(zhì)文章

正在加載中
  • 推薦
  • 1
  • 收藏
  • 共同學(xué)習(xí),寫下你的評(píng)論
感謝您的支持,我會(huì)繼續(xù)努力的~
掃碼打賞,你說多少就多少
贊賞金額會(huì)直接到老師賬戶
支付方式
打開微信掃一掃,即可進(jìn)行掃碼打賞哦
今天注冊(cè)有機(jī)會(huì)得

100積分直接送

付費(fèi)專欄免費(fèi)學(xué)

大額優(yōu)惠券免費(fèi)領(lǐng)

立即參與 放棄機(jī)會(huì)
微信客服

購課補(bǔ)貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網(wǎng)APP
您的移動(dòng)學(xué)習(xí)伙伴

公眾號(hào)

掃描二維碼
關(guān)注慕課網(wǎng)微信公眾號(hào)

舉報(bào)

0/150
提交
取消